• Title/Summary/Keyword: geotechnical behavior

Search Result 1,589, Processing Time 0.026 seconds

Dynamic Behavior Evaluation of Pile-Supported Slab Track System by Centrifuge Model Test (원심모형 실험을 통한 궤도지지말뚝구조의 동적 거동 평가)

  • Yoo, Mintaek;Lee, Myungjae;Baek, Mincheol;Choo, Yun-Wook;Lee, Il-Wha
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.2
    • /
    • pp.5-17
    • /
    • 2019
  • Dynamic centrifuge model test was conducted to evaluate the dynamic stability of the pile-supported slab track method during dynamic railway loading and earthquake loading. The centrifuge tests were carried out for various condition of embankment height and soft ground depth. Based on test results, we found that the bending moment was increased with embankment height and decreased with soft ground depth. In addition, it was confirmed that the pile-supported slab track system could have dynamic stability for short-period seismic loading. However, in case of long-period seismic loading, such as Hachinohe earthquake, the observed maximum bending moment reached to pile cracking moment at the return period of 2,400 year earthquake. The criterion of ratio between embankment height and soft ground depth was suggested for dynamic stability of pile-supported slab track system.

Frictional responses of concrete-to-concrete bedding planes under complex loading conditions

  • Dang, Wengang;Konietzky, Heinz;Li, Xiang
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.253-259
    • /
    • 2019
  • Concrete-to-concrete bedding planes (CCBP) are observed from time to time due to the multistep hardening process of the concrete materials. In this paper, a series of direct/cyclic shear tests are performed on CCBP under static and dynamic normal load conditions to study the frictional behavior effect by the shear velocities, normal impact frequencies, horizontal shear frequencies, normal impact force amplitudes, horizontal shear displacement amplitudes and normal load levels. According to the experimental results, apparent friction coefficient k ($k=F_{Shear}/F_{Normal}$) shows different patterns under static and dynamic load conditions at the stable shear stage. k is nearly constant in direct shear tests under constant normal load conditions (DCNL), while it is cyclically changing with nearly constant peak value and valley value for the direct shear tests under dynamic normal load conditions (DDNL), where k increases with decreasing normal force and decreases with increasing normal force. Shear velocity has little influence on peak values of k for the DCNL tests, but increasing shear velocity leads to increasing valley values of k for DDNL tests. It is also found that, the valley values of k ascend with decreasing impact normal force amplitude in DDNL tests. The changing pattern of k for the cyclic shear tests under constant and dynamic normal load conditions (CCNL and CDNL tests) are similar, but the peak value of k is smaller in CDNL tests than that in CCNL tests. Normal load levels, shear displacement amplitudes, vertical impact frequencies, horizontal shear frequencies and normal impact force amplitudes have little influence on the changing pattern of k for the cyclic shear tests. The tests of this study provide useful data in understanding the frictional behavior of the CCBP under distinct loadings, and these findings are very important for analyzing the stability of the jointed geotechnical structures under complicated in situ stress conditions.

Experimental and Numerical Study on Hydro-thermal Behaviour of Artificial Freezing System with Water Flow (물의 흐름을 고려한 인공동결 시스템의 열-수리 거동 연구)

  • Jin, Hyunwoo;Lee, Jangguen;Ryu, Byung Hyun;Go, Gyu-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.12
    • /
    • pp.17-25
    • /
    • 2020
  • The artificial ground freezing method is a ground amelioration technology that does not have a permanent effect on the ground. One of the key factors that determine the efficiency and design criteria of the artificial ground freezing is the groundwater flow. Therefore, in order to accurately evaluate the behavior of the artificial ground freezing, studies on the effect of water flow on the formation of ice walls must be preceded. In this paper, experimental and numerical analyses were conducted using only pure water to maximize the effect of water flow on the formation of ice walls. A hydro-thermal coupled model for freezing behavior was proposed and the accuracy of the model was verified. Through the numerical and experimental studies, the flow rate dominates not only the formation time but also the shape of the ice wall. In addition, this study proposes a method to indirectly predict the ice wall formation time, which is expected to be highly useful for a practical application where it is difficult to visually identify ice walls.

Seismic Stability Evaluation of the Breakwater Using Dynamic Centrifugal Model Test (동적원심모형 시험을 이용한 지진 시 방파제의 내진안정성 검토)

  • Kim, Young-Jun;Jang, Dong-In;Kawk, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.6
    • /
    • pp.39-50
    • /
    • 2021
  • Recently, as the occurrence of earthquakes with a magnitude of 5.0 or higher in Korea increases, many studies and interests in seismic design are increasing. A lot of damage was caused by the Pohang earthquake in 2017, and port facilities such as a breakwater were also damaged. This study analyzed the dynamic behavior of the upright breakwater, an external facility, based on a centrifugal model experiment. A series of centrifugal model test was conducted by three different seismic waves such as Pohang Earthquake Wave, Artificial Wave I, and II. As a result, the dynamic behavior of upright breakwater was analyzed. The review showed that acceleration amplification tends to be suppressed as breakwater foundation ground increases support and stiffness through DCM reinforcement and riprap replacement.

Finite Element Analysis based on the Macroelement Method for the Design of Vacuum Consolidation (진공압밀공법 설계를 위한 Macro-element법 기반 유한요소해석)

  • Kim, Hayoung;Kim, Kyu-Sun
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.29-37
    • /
    • 2022
  • A three-dimensional analysis is required to interpret the drainage behavior of an improved ground with vertical drains, and the macroelement method enables efficient interpretation considering the three-dimensional drainage effect of vertical drains under two-dimensional plane strain condition. In this study, a novel finite element analysis program was developed by applying the macroelement method to the vacuum consolidation method used in ground improvement practice. The conventional macroelement method was used to calculate the amount of drainage from the vertical drain by setting the excess porewater pressure in the drainage material to zero; however, the program developed in this study was improved to consider negative excess porewater pressure as an actual vacuum consolidation condition. To verify the performance of the program, because of a comparison with the measurement values at the site where the vacuum consolidation method was applied, results predicted by the program and field measurement data showed similar settlement behavior.

Effect of Groundwater Flow on the Behavior of Circular Vertical Shaft (지하수 유동을 고려한 원형수직구 거동분석)

  • Park, Heejin;Park, Jongjeon;Jeong, Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.6
    • /
    • pp.29-39
    • /
    • 2022
  • This study investigates the behavior of a circular vertical shaft wall in the absence and presence of a groundwater table. The effects of wall deflection, backfill settlement, and earth pressure distribution around the circular vertical shaft caused by sequential excavations were quantified. The vertical shaft was numerically simulated for different excavation depths of the bearing layer (weathered soil, weathered rock, soft rock) and transient and steady-state flows in the absence of a groundwater table. The backfill settlements and influential area were much larger under transient flow conditions than in steady-state flow. On the contrary, the horizontal wall deflection was much larger in steady state than in the transient state. Moreover, less settlement was induced as the excavation depth increased from weathered soil to weathered rock to the soft rock layer. Finally, the horizontal stresses under steady- and transient-state flow conditions were found to exceed Rankine's earth pressure. This effect was stronger in the deeper rock layers than in the shallow soil layers.

Comparative Analysis of Final Consolidation Settlement by Degree of Consolidation in Soft Soils of Yeongam-Haenam Areas (영암-해남 연약지반의 압밀도 변화에 따른 최종침하량 비교분석)

  • Kim, Tae-Wan;Nam, Geon;Kim, Jae-Hong
    • Journal of the Korean Geotechnical Society
    • /
    • v.39 no.9
    • /
    • pp.25-33
    • /
    • 2023
  • To effectively improve soft soils, it is necessary to perform ground behavior characteristics and stability management through measurement activities when embankment of structures on soft soils is conducted. However, there are many differences between the actual ground behavior and the initial design plan. To address this issue, this study analyzed the measured settlement in the Yeongam-Haenam areas using the Hyperbolic method to predict the settlement based on the measurement data. From the completion time of the embankment in the target area, the final settlement was predicted through the change in the degree of consolidation by the measurement period. Furthermore, the final settlement according to the change in degree of consolidation was compared and analyzed through finite element analysis and field measurement.

Sequential Analysis of Adjacent Ground Behaviors Caused by Deep Excavations (굴착 공정별 주변지반 거동 분석)

  • Seo Min-Woo;Seok Jeong-Woo;Yang Ku-Seung;Kim Myoung-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.19-28
    • /
    • 2006
  • Long-term field observations were performed in three excavation sites in order to investigate the displacement behavior of adjacent ground during overall excavation procedure, where the depths of deep excavations were 15 m$\∼$29 m. In this study, ground settlements and lateral displacements of braced wall measured during installation of retaining wall and removal of bracing were specially focused to evaluate the behavior quantitatively according to three-stage-divided procedure, i.e. pre-excavation, main excavation, and removal of bracing. Through field measurements on three excavation sites, lateral displacements induced during removal of bracing are approximate to 40$\%$ of the amount found during main excavation stage and additional adjacent ground deformation during post-excavation procedure ranges from 18$\%$ to 33$\%$ of that found during main excavation stage, based on the settlement volume. In conclusion, it was quantitatively identified in this study that the deformations of adjacent ground during pre- and post-excavation stage were not negligible.

A Study on Interaction Behaviors of Soil-PET Mat installed on Dredged Soils (연약한 준설점토상 매립시 포설된 PET 매트와 지반거동에 관한 연구)

  • Lee Man-Soo;Jee Sung-Hyun;Yang Tae-Seon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.13-21
    • /
    • 2006
  • Geosynthetic damage has attracted a major attention since the introduction of geotextiles for civil engineering applications. In this study 3 pilot trial embankments were carried out to investigate the behaviours of reinforced embankments over soft cohesive soils and to find the optimum methodology of embankments over soft soils. As the seamed part of polyester mat (PET, tensile strength 15 ton) used in the first full-scale field test was ruptured under progressing rotational slope failure because of unexpectedly rapid construction of embankments, the excessive pore water pressures were measured. On the soil behavior where tension explosion of mat was continued, pore pressure larger than the one caused by embankment height was measured. Especially, at the depth of 5.0 m under the ground pore pressure increased over long term. It was discussed with respect to the height of embankment and heaving behavior of soft soils.

3D Finite Element Analysis on Load Carrying Capacity of Geosynthetic-reinforced Bridge Abutment (보강토 교대 구조물의 하중지지 특성에 관한 3차원 유한요소해석)

  • Yoo, Chung-Sik
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.5
    • /
    • pp.15-26
    • /
    • 2010
  • This paper presents the results of a three-dimensional finite element analysis on a geosynthetic-reinforced bridge abutment. Examples on the use of mechanically stabilized earth bridge abutment in north America are first presented. A three-dimensional finite element analysis on a 4.8 m high, 14 m wide geosynthetic-reinforced bridge abutment was performed to investigate the 3D behavior of the geosynthetic-reinforced bridge abutment and the load carrying capacity of the bridge abutment in the three-dimensional space. The results are then presented in a way that the three-dimensional behavior of the abutment can be identified in terms of wall displacements and reinforcement forces. It is shown that the wall facing displacements as well as the reinforcement forces in the abutment are smaller than those computed based on a plane strain approximation.