• Title/Summary/Keyword: geotechnical behavior

Search Result 1,589, Processing Time 0.027 seconds

Asymptotic Analysis for Hydraulic Fractures and Applicability of Boundary Collocation Method (수압파쇄균열의 점근적 해석과 경계병치법의 적용성)

  • Sim Young-Jong;kim Hong-Ta다
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.93-100
    • /
    • 2005
  • The occurrence of multi-segmented hydraulic fractures that show different behavior from the single fracture is common phenomenon. However, it is not easy to evaluate the behavior of multiple fractures computed by most numerical techniques because of complicated process computation. This study presents how to efficiently calculate the displacement of the multi-segmented hydraulic fractures using the boundary collocation method (BCM). First of all, asymptotic solutions are obtained for the closely spaced overlapping fractures and are compared with those by the BCM where the number of collocation points is varied. As a result, the BCM provides an excellent agreement with the asymptotic solutions even when the number of collocation points is reduced ten times as many as that of conventional implementations. Accordingly, the numerical simulation of more realistic and, hence, more complex fracture geometries by the BCM would be valid with such a significant reduction of the number of collocation points.

Influence of Progressive Consolidation on Consolidation Behavior of Normally Consolidated Clayey Soil with Vertical Drains (연직배수재가 설치된 정규압밀 점성토 지반의 점진적 압밀이 차후 압밀거동에 미치는 영향)

  • Yune Chan-Young;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.5-18
    • /
    • 2005
  • In this study, the influence of progressive consolidation from the drainage boundary on the subsequent process of consolidation was investigated. Analytical theory and numerical program f3r consolidation of clayey soil were developed based on finite difference method, in which spatial variation of permeability and volume compressibility were implemented. And model ground with normally consolidated clayey soils and a vertical drain at its center were simulated. Various types of soils with different relations between coefficient of volume compressibility and permeability and void ratio were applied. Also numerical simulations based on the properties of the normally consolidated clay at Nakdong River basin and reconstituted kaolinite soil were performed to recognize its practical impact. Consequently, it is found out that retardation of consolidation induced by progressive consolidation is very important to understand consolidation behavior on field conditions and its effect is remarkable at the initial state of consolidation, and increases with plasticity index and applied load.

Study on Anisotropy of Normally Consolidated Clay Soils (정규압밀점성토의 이방성에 관한 연구)

  • 권오순;정충기
    • Geotechnical Engineering
    • /
    • v.11 no.1
    • /
    • pp.41-50
    • /
    • 1995
  • In situ clay soils with Ko condition have anisotropic characteristics, varying the response according to the principal stress direction upon loading. But because of their practicality and simplicity, consolidated isotropic undrained compression tests are commonly used in practice to determine the behavior of cohesive soils. In this study to investigate the anisotropic characteristics and the effects of consolidation stress states on the response of normally consolidated clay soils during shearing, triaxial compression and extension tests after consolidating the undisturbed clay soil samples, which are obtained as a block sample to normalized consolidation states under isotropic or Ko state, were carried out. As a result of tests, the anisotropy of the undrained strength was confirmed. Comparing the soil responses between isotropic and Ko consolidation, the undrained strength by isotropic consolidation is overestimated because of its higher mean consolidation pressure. And isotropic consolidation reduces the anisotropy of soil response and influences on the stress-strain behavior and pore pressure response because the animotropic soil structure is partially collapsed during isotropic consolidation process. Also, OCR in overconsolidated soils is decreased by isotropic consolidatiorL Friction angle in eztension is higher than that in compression, but regression analysis shows that friction angle with cohesion in extension is almost the same as that without cohesion in compresslon.

  • PDF

Variation of Dielectric Constant of Sand due to Water Content and Measuring Frequency (수분함량과 측정주파수에 따른 사질토 지반의 유전상수 변화)

  • 이주형;오명학;박준범;김형석
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.6
    • /
    • pp.129-139
    • /
    • 2002
  • Dielectric constant measurement has drawn much attention in the investigation of the properties and contaminations of subsurface. In this study, by varying the frequency from 75 kHz to 12 MHz, dielectric constant was measured for the weathered granite soil and Jumunjin sand having different water contents and dry density. The dielectric constant of sand showed the dispersive behavior indicating that dielectric constant decreased with frequency of an electric field. And the dielectric constant of soil increased as water content and/or dry density increased due to the decrease of air portion and/or the increase of amount of water molecules which could contribute to the development of orientation polarization. The dielectric constant of sand showed a linear relationship with the moisture density, considering both water content and dry density. At low frequency, the dielectric constants calculated by Maxwell's, Topp's and CRIM equation deviated from measured values. It could be explained by the fact that those equations did not consider dispersive behavior of dielectric constant with the frequency.

Scaling Technique of Earthquake Record and its Application to Pile Load Test for Model Driven into Pressure Chamber (지진 기록의 확대(Scaling) 기법과 압력토오 말뚝모형실험에의 적용)

  • 최용규
    • Geotechnical Engineering
    • /
    • v.12 no.2
    • /
    • pp.19-32
    • /
    • 1996
  • Based on Trifuilac's empirical model to transform earthquake acceleration time history in the time domain into Fourier amplitude spectrum in the frequency domail an earthquake scaling technique for simulating the earthquake record of certain magnitude as the required magnitude earthquake was suggested. Also, using the earthquake record of magni dude(M) 5.8, the simulated earthquake of magnitude(M) 8.0 was established and its application to dynamic testing system was proposed. The earthquake scaling technique could be considered by several terms : earthquake magnitude(M), earthquake intensity(MMI), epicentral distance, recording site conditions, component direction and confidence level required by the analysis. Albo, it had an application to the various earthquake records. The simulated earthquake in this study was established by two orthogonal horizontal components of earthquake acceleration-time history. The simulated earthquake shaking could be applied to the dynamic pile load test for the model tension pile and the model compressive open -ended piles driven into the pressure chamber. In the static pile load test, behavior of two piles was very different and after model tension pile experienced 2 or 3 successive slips of the pile relative to the soil, it was failed completely. During the simulated earthquake shaking, dynamic behavior and pile capacity degradation of two piles were very different.

  • PDF

Stability Analysis of Waste Landfill Using Multi-interface Element Numerical Method (복합 경계면요소 수치해석에 의한 매립지 안정성 해석)

  • 장연수;김홍석
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.4
    • /
    • pp.29-38
    • /
    • 2004
  • A finite element nonlinear stress-deformation model with multi-interface element is applied to the stability analysis of waste landfill slope. Strength parameters of waste and geosynthetic materials are obtained from the triaxial test of waste and the direct shear test of geosynthetics, respectively. The landfill models used for the numerical models are fit to regulations of the Korean waste management law. The results of the strength tests showed linear behavior for the waste and nonlinear behavior for the eosynthectic materials. The stability analysis with multi-interface element for the geosynthetic materials in the liner system showed large shear stress and slippage at the boundary of the foundation and the slope of the waste fill. This analysis verified the necessity of multi-interface analysis for waste landfills with composite liners.

Characteristics of Undrained Static Shear Behavior for Sand Due to Aging Effect (Aging 효과에 따른 모래의 비배수 정적전단거동 특성)

  • 김영수;김대만
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.137-150
    • /
    • 2004
  • Aging effect of sands showed insignificant result in comparison with that of clay, so that it has not been studied so far. But, as penetration resistance increase has been observed with the lapse of time after deposition and disturbance, aging effect of sands has been actively investigated by field tests, and recently many researchers are performing not oかy field tests but also laboratory tests on sands, so aging effects of sands have been also examined by laboratory tests. In this study, to observe the aging effect of undrained static shear behavior for Nak-Dong River sand, undrained static triaxial tests were performed with changing relative density$(D_r)$, consolidation stress ratio$(K_c)$, and consolidation time. These tests showed that modulus within elastic section increased as consolidation time increased, and in addition, phase transformation point strength$(S_{PT})$ and critical stress ratio point strength $(S_{CSR})$ also increased. But pore water pressure ratio$(u/{p_c}')$ decreased as consolidation time increased, so with this various result, aging effect of static shear for sands can be observed as well.

Effect of the Non-linear Permeability of Clays on the Behavior of Soils in Embankment Construction (제방 성토시 지반거동에 대한 점토의 비선형 투수성의 영향)

  • Kim, Tae-Hoon;Han, Tae-Gon;Yoo, Ki-Cheong;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.6
    • /
    • pp.61-73
    • /
    • 2004
  • The coefficient of permeability of natural clay shows a nonlinear property which is related to various stress level of soils, and this nonlinear property has effect on the period of consolidation and the property of deformation in clay soils under loading. Thus, in this paper the numerical analysis was conducted by FEM-using coupled theory which incorporated Biot's consolidation theory into modified Cam-clay model- to consider the effects of nonlinear permeability on the behavior of clay soils under loading. The result of this paper showed that nonlinear permeability had different effects on the deformation and excess pore water pressure in clay soils according to the change of ratios of coefficients of permeability which was presented a degree of nonlinear property, and average coefficients of permeability of soils. Therefore, it was concluded that nonlinear permeability should be considered according to both the change of ratios of coefficients of permeability and average coefficients of permeability to conduct more simultaneous analyses to field conditions.

Behavior Characteristics of Batter Piles by Model Test (모형실험에 의한 경사말뚝의 거동 특성)

  • 권오균;이활;석정우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.59-66
    • /
    • 2004
  • In this study, the behavior characteristics of vertical and batter piles were analyzed by the model tests and the numerical analyses. Model steel pipe piles with the inclination of 0$^{\circ}$, 10$^{\circ}$, 20$^{\circ}$ and 30$^{\circ}$ were driven into sands with the relative density of 79%. The static compression load tests and numerical analyses using PENTAGON 3D were performed. The bearing capacities of batter piles with inclination of 10$^{\circ}$, 20$^{\circ}$ and 30$^{\circ}$ were 111, 95, and 81% of those of vertical pile in model tests, and the results of numerical analyses were similar to those of model tests. The bearing capacities p.oposed by Petrasovits and Award (1968) were similar to those of model test in the inclination of 10$^{\circ}$, but overestimated in the inclination of 20$^{\circ}$ and 30$^{\circ}$. The skin frictions and end bearing loads were the maximum in the inclination of 10$^{\circ}$ and decreased with increasing the inclination angle.

Formulation of Fully Coupled THM Behavior in Unsaturated Soil (불포화지반에 대한 열-수리-역학 거동의 수식화)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.75-83
    • /
    • 2011
  • Emerging issues related with fully coupled Thermo-Hydro-Mechanical (THM) behavior of unsaturated soil demand the development of a numerical tool in diverse geo-mechanical and geo-environmental areas. This paper presents general governing equations for coupled THM processes in unsaturated porous media. Coupled partial differential equations are derived from three mass balances equations (solid, water, and air), energy balance equation, and force equilibrium equation. With Galerkin formulation and time integration of these governing equations, finite element code is developed to find nonlinear solution of four main variables (displacement-u, gas pressure-$P_g$), liquid pressure-$P_1$), and temperature-T) using Newton's iterative scheme. Three cases of numerical simulations are conducted and discussed: one-dimensional drainage experiments (u-$P_g-P_1$), thermal consolidation (u-$P_1$-T), and effect of pile on surrounding soil due to surface temperature variation (u-$P_1$-T).