• Title/Summary/Keyword: geotechnical behavior

Search Result 1,589, Processing Time 0.027 seconds

Evaluation of Spudcan Penetration/Extraction Behavior in Uniform Sand and Clay (모래와 점토 단일지반에서의 스퍼드캔 관입/추출 거동 평가)

  • Yoo, Jin-Kwon;Park, Duhee;Kang, Jaemo
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.17-28
    • /
    • 2017
  • We performed laboratory spudcan penetration and extraction tests considering various geometries. Jumunjin sand, representative standard sand in South Korea, and kaolinite were used for uniform sand and clay layers, respectively. The measured vertical bearing and pull-out capacities were compared to empirical equations for shallow foundations. The results showed good agreement between measured and calculated bearing capacity from laboratory test and previous study at shallow depths. The effect of spudcan geometry is shown to depend on site condition. The influence of a sharp spigot is not significant in clays. The slope of the spudcan surface is shown to influence the pull-out capacity. The characteristics of spudcan penetration and extraction behavior considering various geometries can be a useful reference for determining spudcan geometries.

Back Analysis of Unsaturated Hydraulic Conductivities for Transient Water Release and Imbibitions Measurement (부정류 유출 및 흡입시험에 대한 불포화 투수계수의 역해석)

  • Oh, Seboong;Kim, Do-Hyung;Song, Young-Sug
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.5-12
    • /
    • 2018
  • Tests for transient water release and imbibitions measurement were conducted to estimate the unsaturated hydraulic conductivities by using back analysis. By using transient hydraulic characteristics, both the soil water retention curve and hydraulic conductivity fuction can be evaluated effectively and accurately. In this study the experiment for three samples were conducted accurately to measure the change of water content with time for various steps of matric suction. The back analysis calculated the amount of transient flow reliably in comparison with the experimental results. In the soil water retention curve there was no significant difference between the result of back analysis and that of experiment. The hydraulic conductivity function from back analysis was compared with the theoretical relation based on retention curve but they showed much difference. However, the unsaturated hydraulic behavior obtained by the combination of experimental and analytical techniques are considered to agree with the actual behavior.

Dynamic Interaction of Single and Group Piles in Sloping Ground (경사지반에 설치된 단일말뚝과 무리말뚝의 동적 상호작용)

  • Tran, Nghiem Xuan;Yoo, Byeong-Soo;Kim, Sung-Ryul
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.1
    • /
    • pp.5-15
    • /
    • 2020
  • Dynamic behavior of pile foundation is significantly influenced by the dynamic interaction between soil and pile. Especially, in the sloping ground, the soil-pile interaction becomes very complex due to different resistance according to loading direction, soil residual displacement and so on. In this study, dynamic centrifuge tests were performed on the piles in the sloping ground. The model structures consisted of a single pile and 2×2 group pile. The soil-pile interaction has been investigated considering various conditions such as slope, single and group piles, and amplitude of input motions. The phase differences between soil and pile displacement and dynamic p-y curves were evaluated. The analysis results showed that the pile behavior was largely influenced by the kinematic forces between soil and pile. In addition, the dynamic p-y curve showed the complex hysteresis loop due to the effect of slope, residual displacement, and kinematic forces.

An Equation for the Prediction of Material Function of Super Soft Clay (초연약 점토의 구성관계 산정식)

  • Kang, Myoung-Chan;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.221-228
    • /
    • 2003
  • In land reclamation construction using marine clay, a measure of material function, that is, the relation between void ratio-effective stress and permeability, is very important aspect for the prediction of self-weight consolidation behavior. But reclaimed ground has very high water content, so there are many difficulties in the laboratory test for measuring material function. For this reason, some researches are carried out using slurry cconsolidometr to measure material function. In this study, material function was measured using slurry consolidometer, and to overcome the shortcoming of researches using slurry cosolidometer, an equation for the prediction of material function was proposed on the basis of column test's parameter. Material function was determined through low stress consolidation test and permeability test, and it also was calculated with the equation using column test parameter. The continuity of material function could be confirmed through these tests. Material function is easily determined with the equation proposed in this study, and can be used for the prediction of self-weight consolidation behavior.

The Behavior of Piled Bridge Abutments Subjected to Lateral Soil Movements - Design Guidelines - (측방유동을 받는 교대말뚝기초의 거동분석 (II) - 측방유동 판정기준 -)

  • 이진형;서정주;정상섬;장범수
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.21-29
    • /
    • 2003
  • In this study, practical guidelines to check the possibility of some lateral movement of piled abutment were investigated. In these tests, both the depth of soft clay and the rate of embankment construction are chosen to examine the effect on lateral soil movements. The depth of soft clay layer varies from 5.2 m to 11.6 m, and the rate of embankment construction has two types : staged construction(1m/30days, 1m/15days) and instant construction. Various measuring instruments such as LVDTs, strain gauges, pressure cells, and pore pressure transducers are installed in designed positions in ordo. to clarify the soil - pile interaction and the short and long term behavior f3. piled bridge abutments adjacent to surcharge loads. The validity of the proposed guidelines by centrifuge test was compared with the observed performance by lateral movement index, F(Japan Highway Public Corporation) and modified I index(Korea Highway Corporation). Based on the results obtained, the critical values off and modified I, as a practical guidelines, are proposed as 0.03 and 2.0, respectively.

The Behavior of Bearing Capacity for the Precast files (기성말뚝의 지지거동)

  • 박영호
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.1
    • /
    • pp.107-116
    • /
    • 2000
  • Dynamic and static load tests are conducted in four construction sites by using steel pipe piles(SPP) and concrete piles to compare differences of load bearing mechanism. Steel pipe piles are instrumented with electric strain gages and are subject to dynamic load tests during driving. The damage of strain gages attached is checked simultaneously. Static load test is also conducted on the same piles after two to seven days' elapse. Then load-settlement behavior and shaft and/or tip resistances are measured. As a result, the allowable bearing capacity calculated by the Davisson's offset method of CAPWAP analysis shows 2~33% larger than that of static load test. The average value of allowable bearing capacity of static load test is closer to the allowable capacity obtained at the safety factor of 2.5 applied on ultimate bearing capacity than to the one obtained from the Davisson's offset method. The analysis of strain gage readings shows that unit skin friction increases with depth. Furthermore, the friction mobilized around the 1~2m above the pile tip considerably contributes to the total shaft resistance.

  • PDF

Estimation of Slope Behavior by Soil Temperature (지중온도에 의한 사면의 거동 예측)

  • 장기태;한희수;유병선
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.407-418
    • /
    • 2003
  • It is necessary, in the light of the importance of long-term slope stability problem, to develop a simple method or tool which can figure out the possible failure surface resulting from weathering effect and other factors. The FBG(Fiber Bragg Crating) sensor system is used to estimate the correlations between the soil temperature and the slope behavior, and to find a failure surface in slopes effectively. This research is to seek for the correlation between the soil temperature distribution and the strain distribution of the reinforcing materials in an active zone by analyzing the data from the in-situ measurement so that the possible failure surface should be well defined based on the correlation. The zone of high temperature fluctuation can be regarded as one of the possible failure surface due to the weathering effect while the constant temperature depth of the ground, if exists, would not be relatively affected by the weathering process.

A Parametric Study to Estimate the Behavior of a Piled Raft Foundation Influenced by Ground Conditions (지반조건이 Piled Raft 기초의 거동에 미치는 영향 평가를 위한 매개변수 연구)

  • You, Kwang-Ho;Jung, Yeun-Hak
    • Journal of the Korean Geotechnical Society
    • /
    • v.32 no.8
    • /
    • pp.35-46
    • /
    • 2016
  • In this study, a sensitivity analysis was carried out by using numerical analysis under the consideration that it is difficult to analyze the behavior of real piled raft foundations on different ground conditions through a real scale test. The program used for numerical analysis is FLAC 3D based on the finite difference method. Piles were modelled by using pile element that is one of the structure elements of FLAC 3D and the ground and raft were modelled by using continuum element. With a fixed pile arrangement of $3{\times}3$, the diameter, length, space of piles, and ground conditions were selected as sensitivity parameters and their mutual correlation were investigated. As a result, the bigger and longer pile diameter, length and pile space are, the bigger the bearing capacity of the piled raft becomes. When pile space exceeded a specific value, however, the piled raft foundation behaved like a shallow foundation supported by only a raft. Also it can be confirmed that the better ground conditions are, the more total bearing capacity of the piled raft foundation increases.

A Study on the Liquefaction Behavior of Bottom Ash (Bottom Ash의 액상화 저항특성 연구)

  • Yoon, Won-Sub;Chae, Young-Su
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.6
    • /
    • pp.63-79
    • /
    • 2011
  • In this study relative density tests of bottom ash and standard sand were carried out. And cyclic triaxial tests for samples with the relative density of 40%, 55%, and 70% were carried out on the basis of the test results. Cyclic triaxial tests were also conducted for fines content with 55% relative density. Residual samples were divided into No.40, No.60, No.60, and No.100, and No.200. In order to avoid crashing that can happen when compaction of the sample is initiated, bottom ash was crushed using the a compact mold. In consideration of the crushing characteristics of each residual samples, the fragmentation rate increased up to 30%, which led to the adjustment of fine-grained amount to 10%, 20%, and 30%. Through the repative triaxial test in accordance with the relative density, resistant characteristics of the liquefaction of bottom ash was analyzed. Test results show that, crushing strength of bottom ash was smaller than that of standard sand, resulting in different liquefaction behavior characteristics. And we could find fines content with maximum resistant characteristics of the liquefaction.

Characteristics Changes of Weathered Soil by Weathering (풍화에 따른 풍화토의 특성 변화)

  • 권오순;정충기
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.53-66
    • /
    • 1998
  • Since weathered soils are made by weathering process, the characteristics of weathered soils are strongly related to the originated rock and its forming process. Investigations on the originated rock and the weathering environments that decide the forming process are indispensable for the appropriate analysis on weathered soils. In this study, forming process of weathered soil is investigated by geological viewpoint. Test results show that weathering of rock is closely related to the distribution of rock-forming mineral and forming process. Weathered granite soils have the isotropic in-situ stress state and shearing behavior caused by the non-directional characteristics of originated rock. And weathered gneiss soils have the directional characteristics that mechanical behavior is determined by internal discontinuities. It it proved that the weathering resistance of Quarte is greater than that of feldspar and mica, and it is concluded that the thickness of weathered region is greatly influenced by the distribution of rock-forming mineral.

  • PDF