• Title/Summary/Keyword: geotechnical behavior

Search Result 1,589, Processing Time 0.023 seconds

A study on the correlation of the structural integrity's reduction factors using parametric analysis (매개변수 해석을 이용한 구조물 건전도 저감 영향인자 상관성 연구)

  • La, You-Sung;Park, Min-Soo;Koh, Sungyil;Kim, Chang-Yong
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.485-502
    • /
    • 2021
  • In order to evaluate the impact of ground subsidence and superstructures that are inevitably caused by tunnel excavation, a total of seven major influencing factors of surface subsidence and structural soundness reduction were set, and a Parameter Study using numerical analysis was conducted. Stability analysis was performed using scheme of Boscardin and Cording method and the maximum subsidence amount and the angular displacement, and correlation analysis was performed for each major influencing factor. In addition, it was applied that used the mutual behavior of the ground and the structure by parameter analysis in the site of the 𐩒𐩒𐩒 tunnel located in Hwaseong-si, Gyeonggi-do, and the applicability of the site was analyzed. As a result, the error was found to be 1.0%, and it could be used as a basic material for determining the appropriate tunnel route under various conditions when evaluating the stability of the structure according to tunnel excavating at the design stage.

Numerical study on the rate-dependent behavior of geogrid reinforced sand retaining walls

  • Li, Fulin;Ma, Tianran;Yang, Yugui
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.195-205
    • /
    • 2021
  • Time effect on the deformation and strength characteristics of geogrid reinforced sand retaining wall has become an important issue in geotechnical and transportation engineering. Three physical model tests on geogrid reinforced sand retaining walls performed under various loading conditions were simulated to study their rate-dependent behaviors, using the presented nonlinear finite element method (FEM) analysis procedure. This FEM was based on the dynamic relaxation method and return mapping scheme, in which the combined effects of the rate-dependent behaviors of both the backfill soil and the geosynthetic reinforcement have been included. The rate-dependent behaviors of sands and geogrids should be attributed to the viscous property of materials, which can be described by the unified three-component elasto-viscoplastic constitutive model. By comparing the FEM simulations and the test results, it can be found that the present FEM was able to be successfully extended to the boundary value problems of geosynthetic reinforced soil retaining walls. The deformation and strength characteristics of the geogrid reinforced sand retaining walls can be well reproduced. Loading rate effect, the trends of jump in footing pressure upon the step-changes in the loading rate, occurred not only on sands and geogrids but also on geogrid reinforced sands retaining walls. The lateral earth pressure distributions against the back of retaining wall, the local tensile force in the geogrid arranged in the retaining wall and the local stresses beneath the footing under various loading conditions can also be predicted well in the FEM simulations.

Experimental Study for Thermal Characteristics of Frozen Soil Samples (동토 시료의 열적 특성 분석을 위한 실험적 연구)

  • Sewon, Kim;Sangyeong, Park;Jongmuk, Won;YoungSeok, Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.21 no.4
    • /
    • pp.31-40
    • /
    • 2022
  • Recently, the Arctic resource development project, where undeveloped energy resources (oil, natural gas, etc.) are deposited, is actively being promoted for the perspective of diversifying the construction market and developing future energy resources. However, the frozen ground always has problems such as sinking and frost-heaving due to extreme weather. Therefore, it is necessary to analyze the thermal characteristics of the frozen soil to secure the stability of the ground structure. In this study, a series of laboratory tests were performed to evaluated the thermal characteristics of frozen soil samples in the oil sand field in Alberta, Canada. In additon, it was compared with the results of domestic(Gangwond-do) sample performed under the same conditions. As a comparison results of the experiments, it was clarified that the different frozen water content and thermal conductivity characteristics by temperature after completion of freezing could affect the frozen soil behavior.

Liquefaction Evaluation by One-Dimensional Effective Stress Analysis Using UBC3D-PLM Model (UBC3D-PLM 모델을 이용한 1차원 유효응력해석에 의한 액상화 평가)

  • Jung-Hoe Kim;Hyun-Sik Jin
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.151-167
    • /
    • 2023
  • This study compares the revised method in loose saturated sandy ground where the LNG storage tank will be installed with an evaluation method by one-dimensional effective stress analysis using the UBC3D-PLM model. Various laboratory and field tests were conducted to establish the parameters necessary for evaluation. The revised liquefaction evaluation method using the seismic response analysis result and N value from standard penetration testing evaluated the possibility of liquefaction as high, but assessment using effective stress analysis, which can consider various liquefaction resistance factors, found the site to be somewhat stable against liquefaction. One-dimensional finite element analysis using UBC3D-PLM modeling facilitated easier assessment of stability against liquefaction than the other methods and minimized the area required for reinforcement against liquefaction. In addition, it is expected that two-and three-dimensional numerical analysis considering the foundation of the LNG storage tank can identify the seismic design and behavior when liquefaction occurs.

Seismic holding behaviors of inclined shallow plate anchor embedded in submerged coarse-grained soils

  • Zhang, Nan;Wang, Hao;Ma, Shuqi;Su, Huaizhi;Han, Shaoyang
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.197-207
    • /
    • 2022
  • The seismic holding behaviors of plate anchor embedded into submerged coarse-grained soils were investigated considering different anchor inclinations. The limit equilibrium method and the Pseudo-Dynamic Approach (PDA) were employed to calculate the inertia force of the soils within the failure rupture. In addition, assuming the permeability of coarse-grained soils was sufficiently large, the coefficient of hydrodynamic force applied on the inclined plate anchor is obtained through adopting the exact potential flow theory. Therefore, the seismic holding resistance was calculated as the combination of the inertia force and the hydrodynamic force within the failure rupture. The failure rupture can be developed due to the uplift loads, which was assumed to be an arc of a circle perpendicular to the anchor and inclines at (π/4 - φ/2). Then, the derived analytical solutions were evaluated by comparing the static breakout factor Nγ to the published experimental and analytical results. The influences of soil and wave properties on the plate anchor holding behavior are reported. Finally, the dynamic anchor holding coefficients Nγd, were reported to illustrate the anchor holding behaviors. Results show that the soil accelerations in x and z directions were both nonlinear. The amplifications of soil accelerations were more severe at lower normalized frequencies (ωH/V) compared to higher normalized frequencies. The coefficient of hydrodynamic force, C, of the plate anchor was found to be almost constant with anchor inclinations. Finally, the seismic anchor holding coefficient oscillated with the oscillation of the inertia force on the plate anchor.

Study on failure behaviors of mixed-mode cracks under static and dynamic loads

  • Zhou, Lei;Chen, Jianxing;Zhou, Changlin;Zhu, Zheming;Dong, Yuqing;Wang, Hanbing
    • Geomechanics and Engineering
    • /
    • v.29 no.5
    • /
    • pp.567-582
    • /
    • 2022
  • In the present study, a series of physical experiments and numerical simulations were conducted to investigate the effects of mode I and mixed-mode I/II cracks on the fracture modes and stability of roadway tunnel models. The experiments and simulations incorporated different inclination angle flaws under both static and dynamic loads. The quasi-static and dynamic testing were conducted by using an electro-hydraulic servo control device and drop weight impact system (DWIS), and the failure process was simulated by using rock failure process analysis (RFPA) and AUTODYN software. The stress intensity factor was also calculated to evaluate the stability of the flawed roadway tunnel models by using ABAQUS software. According to comparisons between the test and numerical results, it is observed that for flawed roadways with a single radical crack and inclination angle of 45°, the static and dynamic stability are the lowest relative to other angles of fractured rock masses. For mixed-mode I/II cracks in flawed roadway tunnel models under dynamic loading, a wing crack is produced and the pre-existing cracks increase the stress concentration factor in the right part of the specimen, but this factor will not be larger than the maximum principal stress region in the roadway tunnel models. Additionally, damage to the sidewalls will be involved in the flawed roadway tunnel models under static loads.

Geotechnical Characteristics of DCM-Improved Specimen Under Artesian Pressure (피압 작용에 따른 DCM 개량체의 지반공학적 특성)

  • Yun, Dae-Ho;Kim, Yun-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.2
    • /
    • pp.187-195
    • /
    • 2022
  • This study investigated the effect of artesian pressure on mechanical properties of deep cement mixing (DCM)-improved specimens. Various laboratory tests such as unconfined compression test and scanning electron microscope (SEM) were conducted on DCM specimens which curied in a water tank with different artesian pressures. The artesian pressure was determined in consideration of the laboratory scale and the hydraulic gradient in field conditions. Results of experimental tests indicated that unconfined compressive strength, secant modulus, and unit weight of specimen decreased and water content tended to increase as an artesian pressure increased. The stress-strain behavior changed brittle to ductile behaviors as an artesian pressure increased. The outflow water from the water tank reacted with the phenolphthalein solution due to the leaching phenomenon of the improved specimen. SEM analysis also confirmed that a small amount of ettringite was formed between soil particles in the specimens with artesian pressure.

Ensembles of neural network with stochastic optimization algorithms in predicting concrete tensile strength

  • Hu, Juan;Dong, Fenghui;Qiu, Yiqi;Xi, Lei;Majdi, Ali;Ali, H. Elhosiny
    • Steel and Composite Structures
    • /
    • v.45 no.2
    • /
    • pp.205-218
    • /
    • 2022
  • Proper calculation of splitting tensile strength (STS) of concrete has been a crucial task, due to the wide use of concrete in the construction sector. Following many recent studies that have proposed various predictive models for this aim, this study suggests and tests the functionality of three hybrid models in predicting the STS from the characteristics of the mixture components including cement compressive strength, cement tensile strength, curing age, the maximum size of the crushed stone, stone powder content, sand fine modulus, water to binder ratio, and the ratio of sand. A multi-layer perceptron (MLP) neural network incorporates invasive weed optimization (IWO), cuttlefish optimization algorithm (CFOA), and electrostatic discharge algorithm (ESDA) which are among the newest optimization techniques. A dataset from the earlier literature is used for exploring and extrapolating the STS behavior. The results acquired from several accuracy criteria demonstrated a nice learning capability for all three hybrid models viz. IWO-MLP, CFOA-MLP, and ESDA-MLP. Also in the prediction phase, the prediction products were in a promising agreement (above 88%) with experimental results. However, a comparative look revealed the ESDA-MLP as the most accurate predictor. Considering mean absolute percentage error (MAPE) index, the error of ESDA-MLP was 9.05%, while the corresponding value for IWO-MLP and CFOA-MLP was 9.17 and 13.97%, respectively. Since the combination of MLP and ESDA can be an effective tool for optimizing the concrete mixture toward a desirable STS, the last part of this study is dedicated to extracting a predictive formula from this model.

Creation of regression analysis for estimation of carbon fiber reinforced polymer-steel bond strength

  • Xiaomei Sun;Xiaolei Dong;Weiling Teng;Lili Wang;Ebrahim Hassankhani
    • Steel and Composite Structures
    • /
    • v.51 no.5
    • /
    • pp.509-527
    • /
    • 2024
  • Bonding carbon fiber-reinforced polymer (CFRP) laminates have been extensively employed in the restoration of steel constructions. In addition to the mechanical properties of the CFRP, the bond strength (PU) between the CFRP and steel is often important in the eventual strengthened performance. Nonetheless, the bond behavior of the CFRP-steel (CS) interface is exceedingly complicated, with multiple failure causes, giving the PU challenging to forecast, and the CFRP-enhanced steel structure is unsteady. In just this case, appropriate methods were established by hybridized Random Forests (RF) and support vector regression (SVR) approaches on assembled CS single-shear experiment data to foresee the PU of CS, in which a recently established optimization algorithm named Aquila optimizer (AO) was used to tune the RF and SVR hyperparameters. In summary, the practical novelty of the article lies in its development of a reliable and efficient method for predicting bond strength at the CS interface, which has significant implications for structural rehabilitation, design optimization, risk mitigation, cost savings, and decision support in engineering practice. Moreover, the Fourier Amplitude Sensitivity Test was performed to depict each parameter's impact on the target. The order of parameter importance was tc> Lc > EA > tA > Ec > bc > fc > fA from largest to smallest by 0.9345 > 0.8562 > 0.79354 > 0.7289 > 0.6531 > 0.5718 > 0.4307 > 0.3657. In three training, testing, and all data phases, the superiority of AO - RF with respect to AO - SVR and MARS was obvious. In the training stage, the values of R2 and VAF were slightly similar with a tiny superiority of AO - RF compared to AO - SVR with R2 equal to 0.9977 and VAF equal to 99.772, but large differences with results of MARS.

Response transformation factors and hysteretic energy distribution of reinforced concrete braced frames

  • Herian A. Leyva;Eden Bojorquez;Juan Bojorquez;Alfredo Reyes;Fabrizio Mollaioli;Omar Payan;Leonardo Palemon;Manual A. Barraza
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.313-323
    • /
    • 2024
  • Most of existing buildings in Mexico City are made of reinforced concrete (RC), however, it has been shown that they are very susceptible to narrow-band long duration ground motions. In recent years, the use of dual systems composed by Buckling Restrained Braces (BRB) has increased due to its high energy dissipation capacity under reversible cyclical loads. Therefore, in this work the behavior of RC buildings with BRB is studied in order to know their performance, specifically, the energy distribution through height and response transformation factors between the RC and simplified systems are estimated. For this propose, seven RC buildings with different heights were designed according to the Mexico City Seismic Design Provisions (MCSDP), in addition, equivalent single degree of freedom (SDOF) systems were obtained. Incremental dynamic analyses on the buildings under 30 narrow-band ground motions in order to compute the relationship between normalized hysteretic energy, maximum inter-story drift and roof displacement demands were performed. The results shown that the entire structural frames participate in energy dissipation and their distribution is independent of the global ductility. The results let propose energy distribution equations through height. Finally, response transformation factors between the SDOF and multi degree of freedom (MDOF) systems were developed aimed to propose a new energy-based approach of BRB reinforced concrete buildings.