• Title/Summary/Keyword: geotechnical analysis

Search Result 3,051, Processing Time 0.027 seconds

Geotechnical Characteristics and Field application of Soil Mixed with Waste Lime (부산석회 혼합토의 지반공학적 특성 및 현장 적용 사례)

  • 정하익;홍승서;김상근;홍성완;유홍기;임병익
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.217-222
    • /
    • 2003
  • This study was carried out to investigate the geotechnical characteristics and field application of soil mixed with waste lime. Waste lime used in this study is producted as a by-product in the manufacturing process of making Na$_2$CO$_3$from local chemical factory in Incheon. Currently about 320 milton tons of waste lime are accumulated and annually 100,000 tons are producted. In this study, feasible use of waste lime mixed with granited whathered soil, clay, crushed rock was invesigated through laboratory tests including specific gravity test, sieve analysis, hydrometer analysis, compaction test, CBR test. Field investigations were conducted on the road construction site in Incheon.

  • PDF

The elastoplastic formulation of polygonal element method based on triangular finite meshes

  • Cai, Yong-Chang;Zhu, He-Hua;Guo, Sheng-Yong
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.119-129
    • /
    • 2008
  • A small strain and elastoplastic formulation of Polygonal Element Method (PEM) is developed for efficient analysis of elastoplastic solids. In this work, the polygonal elements are constructed based on traditional triangular finite meshes. The construction method of polygonal mesh can directly utilize the sophisticated triangularization algorithm and reduce the difficulty in generating polygonal elements. The Wachspress rational finite element basis function is used to construct the approximations of polygonal elements. The incremental variational form and a von Mises type model are used for non-linear elastoplastic analysis. Several small strain elastoplastic numerical examples are presented to verify the advantages and the accuracy of the numerical formulation.

Analysis of Laterally Loaded Single Piles using Pressuremeter Test (공내재하시험을 이용한 수평하중을 받는 단말뚝의 해석)

  • Lee, Yong-An;Lee, Ju-Hyung;Chung, Moon-Kyung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.1051-1060
    • /
    • 2010
  • In this study, the pressuremeter test (PMT) and the standard penetration test (SPT) were performed on the lateral pile loading tests site to evaluate the coefficient of subgrade reaction, which is used for load-deformation behavior analysis of laterally loaded piles by elastic subgrade reaction method. As a result, widely used empirical formulas of the coefficient of subgrade reaction by N values of SPT is evaluated conservatively lateral behavior of piles. While the method of directly used PMT results and evaluation method of the coefficient of subgrade reaction considering deformation moduli of soil and a pile diameter that is able to estimate very similar to actual load-deformation behavior of laterally loaded piles in deformation range of 0.5%-1.0% of a pile diameter.

  • PDF

Load Transfer on Pulsed Power Discharge Anchors (펄스방전 확공형 앵커의 하중전이에 관한 연구)

  • Kim, Sung-Kyu;Kim, Nak-Kyung;Kim, Jae-Won;Joo, Yong-Sun;Kim, Sun-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.832-839
    • /
    • 2010
  • The pulse discharge anchor is a method to increase the capacity of anchors using electric discharge geotechnical technologies, which is also known as pulse discharge and electric-spark technologies. The pulse discharge anchor has bulbed bond length that is expanded by high voltage electrokinetic pulse energy. 24 anchors were installed in the weathered soil and sandy clay at the Geotechnical Experimentation Site at Sungkyunkwan University in Suwon, Korea and attached strain gauge at 10 anchors. The numerical predictions by Beam-Column analysis were compared with observed measurements in a field load test.

  • PDF

Site Investigation and stability analysis for water tunnel being neighboring construction (근접시공에 대한 수로터널 지반조사 및 안정성 분석)

  • Jeon, Je-Sung;Kim, Ki-Young;Lee, Sang-Duk;Kim, Doo-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.10a
    • /
    • pp.550-555
    • /
    • 2005
  • In vicinity of Seoul, there has been water service tunnel that classified into 1st grade facility by special act for the safety control of public structures and with providing capacity equals to $1,543{\times}10^3$(ton/day) and inner pressure equals to $2.5-3.5kg/cm^2$. In this research, site investigation and stability analysis for water tunnel caused by new construction of road tunnel were carried out. the ground near water tunnel were zoned into spatial area having similar geotechnical characteristics and estimating geotechnical properties for each area. The site for analysis consists of banded biotite gneiss, biotite schist and granite gneiss with spatial non-homogeneity, and for that reason weathering and fault zone were distributed with large scale. It's important thing to consider spatial ground zone and their geotechnical properties properly into stability analysis at design and construction stage. Also, using results of site investigation, stability of existing tunnel have been analyzed for Hydraulic Fracture/Jacking and deformation in detail.

  • PDF

Evaluation of shield TBM segment acting load through monitoring data back analysis (계측 데이터 역해석을 통한 쉴드 TBM 터널 세그먼트의 작용하중 평가)

  • Lee, Gyu-Phil;Chang, Soo-Ho;Bae, Gyu-Jin;Choi, Soon-Wook;Ahn, Chang-Yoon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.905-913
    • /
    • 2017
  • To design segment lining, loads such as self weight, vertical load, horizontal load, ground reaction, water pressure, backfill grouting pressure et al. have to be considered. Earth pressure and water pressure are the major factor to design segment lining such as concrete strength, segment thickness and amount of rebar et al. To analysis earth pressure and water pressure acting on segment lining, filed monitoring and back analysis are performed in this study.

Displacement prediction in geotechnical engineering based on evolutionary neural network

  • Gao, Wei;He, T.Y.
    • Geomechanics and Engineering
    • /
    • v.13 no.5
    • /
    • pp.845-860
    • /
    • 2017
  • It is very important to study displacement prediction in geotechnical engineering. Nowadays, the grey system method, time series analysis method and artificial neural network method are three main methods. Based on the brief introduction, the three methods are analyzed comprehensively. Their merits and demerits, applied ranges are revealed. To solve the shortcomings of the artificial neural network method, a new prediction method based on new evolutionary neural network is proposed. Finally, through two real engineering applications, the analysis of three main methods and the new evolutionary neural network method all have been verified. The results show that, the grey system method is a kind of exponential approximation to displacement sequence, and time series analysis is linear autoregression approximation, while artificial neural network is nonlinear autoregression approximation. Thus, the grey system method can suitably analyze the sequence, which has the exponential law, the time series method can suitably analyze the random sequence and the neural network method almostly can be applied in any sequences. Moreover, the prediction results of new evolutionary neural network method is the best, and its approximation sequence and the generalization prediction sequence are all coincided with the real displacement sequence well. Thus, the new evolutionary neural network method is an acceptable method to predict the measurement displacements of geotechnical engineering.

Probabilistic Analysis of Vertical Drains using Hasofer-Lind Reliability Index (신뢰성지수를 이용한 연직배수공법의 확률론적 해석)

  • Kim, Seong-Pil;Heo, Joon;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.53 no.6
    • /
    • pp.1-6
    • /
    • 2011
  • The conventional factor of safety as used in geotechnical engineering does not reflect the degree of uncertainty of the relevant parameters. Then in the geotechnical engineering, there have been efforts to reflect the uncertainties of the geotechnical properties through probabilistic analysis. In this study, a practical method for probabilistic analysis using the Hasofer-Lind reliability index is introduced. The method is based on the perspective of an ellipsoid that just touches the failure surface in the original space of the variables. The method is applied to prefabricated vertical drains (PVD) and compared with the result of Monte Carlo Simulation method.

Spatial Ground Zoning and Analysis of Geotechnical Characteristics Considering Tunnel Interface (터널 간섭에 따른 지반의 공간 구역화 및 지반공학적 특성 분석)

  • Jeon, Je-Sung;Kim, Yong-Seong;Kim, Ki-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.4
    • /
    • pp.252-260
    • /
    • 2005
  • In this research, case studies considering tunnel interface were conducted for zoning the ground into spatial area having similar geotechnical characteristics and estimating geotechnical properties for each area. The site for analysis consists of banded biotite gneiss, biotite schist and granite gneiss with spatial non-homogeneity, and for that reason weathering and fault zone were distributed with large scale. It's important thing to consider spatial ground zone and their geotechnical properties properly into stability analysis at design and construction stage. Also, in this studies, these analysis works are very useful for further decision making process by stability analysis.

Numerical Analysis Study for Behavioral Characteristics Analysis of Jeju Natural Caves (Jaeamcheon Lava Tube) That Intersect with Roads (도로와 교차하는 제주천연동굴(재암천굴)의 거동특성 분석을 위한 수치해석적 연구)

  • Lee, Jong-Hyun;Jin, Hyun-Sik;An, Joon-Sang;Baek, Yong
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.367-380
    • /
    • 2021
  • This study evaluated the stability through a three-dimensional numerical analysis method when a natural cave exists under a road in operation in Jeju Island. In order to confirm the geometric and geotechnical characteristics of the Jeju natural cave passing under the road, existing geotechnical survey reports were collected, and were studied the characteristics. In order to evaluate the effect of vehicle vibration loading on the natural cave in Jeju, three-dimensional numerical analysis was performed considering discontinuities. Through this, the stability of roads and caves with respect to vehicle speed and the depth of cover (distance from the road to the top of the natural cave) was evaluated and countermeasures were suggested. In order to secure the long-term stability of the Jeju natural cave that penetrates the lower part of the road, it was evaluated that systematic management such as long-term measurement management, reinforcement measures, and emergency measures would be necessary depending on the depth of the cover.