• Title/Summary/Keyword: geosynchronous magnetic field

Search Result 15, Processing Time 0.032 seconds

Statistical study on nightside geosynchronous magnetic field responses to interplanetary shocks

  • Park, Jong-Sun;Kim, Khan-Hyuk;Araki, Tohru;Lee, Dong-Hun;Lee, Ensang;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.116.1-116.1
    • /
    • 2012
  • When an interplanetary (IP) shock passes over the Earth's magnetosphere, the geosynchronous magnetic field strength near the noon is always enhanced, while the geosynchronous magnetic field near the midnight decreases or increases. In order to understand what determines the positive or negative magnetic field response at nightside geosynchronous orbit to sudden increases in the solar wind dynamic pressure, we have examined 120 IP shock-associated sudden commencements (SC) using magnetic field data from the GOES spacecraft near the midnight (MLT = 2200~0200) and found the following magnetic field perturbation characteristics. (1) There is a strong seasonal dependence of geosynchronous magnetic field perturbations during the passage of IP shocks. That is, the SC-associated geosynchronous magnetic field near the midnight increases (a positive response) in summer and decreases (a negative response) in winter. (2) These field perturbations are dominated by the radial magnetic field component rather than the north-south magnetic field component at nightside geosynchronous orbit. (3) The magnetic elevation angles corresponding to positive and negative responses decrease and increase, respectively. These field perturbation properties can be explained by the location of the cross-tail current enhancement during SC interval with respect to geosynchronous spacecraft position.

  • PDF

Morning-afternoon asymmetry of geosynchronous magnetic field variations during geomagnetic sudden commencements

  • Park, Jong-Sun;Kim, Khan-Hyuk;Sung, Suk-Kyung;Lee, Dong-Hun
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.40.2-40.2
    • /
    • 2010
  • It has been reported that geosynchronous magnetopause crossings are more frequently observed in the prenoon sector than in the postnoon sector, indicating a dawn-dusk magnetopause asymmetry during extreme solar wind conditions. Motivated by these observations, we investigate geosynchronous magnetic field variations normalized to SYM-H when sudden commencements (SC) are observed on the ground. From a statistical analysis of the geosynchronous magnetic field responses to SC events from 1997 to 2006, we found that the normalized SC amplitude at geosynchronous orbit is larger in the morning sector than in the afternoon sector. In order to examine if this morning-afternoon asymmetry at geosynchronous orbit occurs only during disturbed geomagnetic conditions, we compared the geosynchronous magnetic field strength obtained in the morning and afternoon during undisturbed intervals (Kp < 3). We found that the asymmetry appears under undisturbed geomagnetic conditions and it is not due to solar wind aberration. This indicates that the morning-afternoon asymmetry was not strongly affected by changes in solar wind condition. Using solar wind data, we discuss what causes the morning-afternoon asymmetry at geosynchronous orbit.

  • PDF

Geosynchronous Magnetic Field Response to Solar Wind Dynamic Pressure

  • Park, Jong-Sun;Kim, Khan-Hyuk;Lee, Dong-Hun;Lee, En-Sang;Jin, Ho
    • Journal of Astronomy and Space Sciences
    • /
    • v.28 no.1
    • /
    • pp.27-36
    • /
    • 2011
  • The present study examines the morning-afternoon asymmetry of the geosynchronous magnetic field strength on the dayside (magnetic local time [MLT] = 06:00~18:00) using observations by the Geostationary Operational Environmental Satellites (GOES) over a period of 9 years from February 1998 to January 2007. During geomagnetically quiet time (Kp < 3), we observed that a peak of the magnetic field strength is skewed toward the earlier local times (11:07~11:37 MLT) with respect to local noon and that the geosynchronous field strength is larger in the morning sector than in the afternoon sector. That is, there is the morning-afternoon asymmetry of the geosynchronous magnetic field strength. Using solar wind data, it is confirmed that the morning-afternoon asymmetry is not associated with the aberration effect due to the orbital motion of the Earth about the Sun. We found that the peak location of the magnetic field strength is shifted toward the earlier local times as the ratio of the magnetic field strength at MLT = 18 (B-dusk) to the magnetic field strength at MLT = 06 (B-dawn) is decreasing. It is also found that the dawn-dusk magnetic field median ratio, B-dusk/B-dawn, is decreasing as the solar wind dynamic pressure is increasing. The morning-afternoon asymmetry of the magnetic field strength appears in Tsyganenko geomagnetic field model (TS-04 model) when the partial ring current is included in TS-04 model. Unlike our observations, however, TS-04 model shows that the peak location of the magnetic field strength is shifted toward local noon as the solar wind dynamic pressure grows in magnitude. This may be due to that the symmetric magnetic field associated with the magnetopause current, strongly affected by the solar wind dynamic pressure, increases. However, the partial ring current is not affected as much as the magnetopause current by the solar wind dynamic pressure in TS-04 model. Thus, our observations suggest that the contribution of the partial ring current at geosynchronous orbit is much larger than that expected from TS-04 model as the solar wind dynamic pressure increases.

Statistical analysis of SC-associated geosynchronous magnetic field perturbations

  • Kim, Gwan-Hyeok;Park, Jong-Seon;Lee, Dong-Hun;Jin, Ho
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.1
    • /
    • pp.91.2-91.2
    • /
    • 2012
  • Kokubun (1983) reported the local time variation of normalized amplitude of sudden commencement (SC) with a strong day-night asymmetry at geosynchronous orbit with 81 SC events. Further careful inspection of Kokubun's local time distribution reveals that the normalized SC amplitudes in the prenoon sector are larger than those in the postnoon sector. That is, there is a morning-afternoon asymmetry in the normalized SC amplitudes. Until now, however, there are no studies on this SC-associated morning-afternoon asymmetry at geosynchronous orbit. Motivated by this previous observation, we investigate a large data set (422 SC events in total) of geosynchronous SC observations and confirm that the geosynchronous SC amplitudes is larger in the morning sector than in the afternoon sector. This morning-asymmetry is probably caused by the enhancement of partial ring current, which is located in the premidnight sector, due to solar wind dynamic pressure increase. We also examine the latitudinal and seasonal variations of the normalized SC amplitude. We find that the SC-associated geosynchronous magnetic field perturbations are dependent on the magnetic latitude and season of the year. This may be due to the location of the magnetopause and cross-tail currents enhanced during SC interval with respect to geosynchronous spacecraft position.

  • PDF

Characteristic So1ar Wind Dynamics Associated With Geosynchronous Relativistic Electron Events

  • Ki, Hui-Jeong
    • Bulletin of the Korean Space Science Society
    • /
    • 2004.04a
    • /
    • pp.41-41
    • /
    • 2004
  • We report the results on the investigation of the association of solar wind dynamics and the occurrence of geosynchronous relativistic electron events. This study analyzed E>2MeV electron fluxes measured by GOES 10 satellite and solar wind parameters by ACE satellite for April, 1999 to December, 2002. Most of the relativistic events during the time period are found to be accompanied by the prolonged period of quiet solar wind dynamics which is characterized as low solar wind pressure, weak interplanetary magnetic field, and fast fluctuations in IMF Bz. (omitted)

  • PDF

MAGNETIC PROPERTIES OF INNER MAGNETOSPHERE DURING GEOMAGNETIC STORMS INFERRED FROM A TSYGANENKO MAGNETIC FIELD MODEL

  • Lee, D.Y.;Kim, K.C.;Choi, C.R.;Kim, H.J.
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.4
    • /
    • pp.303-314
    • /
    • 2004
  • In this paper we report some properties of inner magnetospheric structure inferred from the T01_s code, one of the latest magnetospheric models by Tsyganenko. We have constructed three average storms representing moderate, strong, and severe intensity storms using 95 actual storms. The three storms are then modelled by the T01_s code to examine differences in magnetic structure among them. We find that the magnetic structure of intense storms is strikingly different from the normal structure. First, when the storm intensity is large, the field lines anchored at dayside longitudinal sectors become warped tailward to align to the solar wind direction. This is particularly so for the field lines anchored at the longitudinal sectors from postnoon through dusk. Also while for the moderate storm the equatorial magnetic field near geosynchronous altitude is found to be weakest near midnight sector, this depression region expands into even late afternoon sector during the severe storm. Accordingly the field line curvature radius at the equator in the premidnight geosynchronous region becomes unusually small, reaching down to a value less than 500 km. We attribute this strong depression and the dawn-dusk asymmetry to the combined effect from the enhanced tail current and the westward expansion/rotation of the partial ring current.

CHARACTERISTIC SOLAR WIND DYNAMICS ASSOCIATED WITH GEOSYNCHRONOUS RELATIVISTIC ELECTRON EVENTS

  • Kim, Hee-Jeong;Lee, Dae-Young
    • Journal of Astronomy and Space Sciences
    • /
    • v.21 no.2
    • /
    • pp.93-100
    • /
    • 2004
  • We have investigated characteristic solar wind dynamics associated with relativistic electron events at geosynchronous orbit. Most of the events for April, 1999 through December, 2002 are found to be accompanied by a prolonged solar quiet period which is characterized as low solar wind density, weak interplanetary magnetic field (IMF), and fast alfvenic fluctuations in IMF $B_z$. In a typical relativistic event, electron fluxes begin to increase by orders of magnitude when solar wind parameters drop to low values (e.g., $n_{sw}∼5 cm^{-3}$ and |$B_{IMF}$∼5 nT) after sharp peaks. Then the elevated electron fluxes stay at the high level during the solar quiet period. This observation may suggest the following scenario for the occurrence of a geosynchronous relativistic event: (ⅰ) Quiet solar winds can yield a stable and more dipole-like magnetospheric configurations in which the geosynchronous orbit locates well inside the trapping boundary of the energetic electrons. (ⅱ) If a large population of MeV electrons are generated (by whatever acceleration process(es)) in the inner magnetosphere, they can be trapped and effectively accumulated to a high intensity. (ⅲ) The high electron flux can persist for a number of days in the geosynchronous region as long as the solar wind dynamics stays quiet. Therefore the scenario indicates that the occurrence of a relativistic event would be a result of a delicate balance between the effects of electron acceleration and loss. In addition, the sensitive dependence of a relativistic event on the solar wind conditions makes the prediction of solar wind variability as important as understanding of electron acceleration processes in the forecast of a relativistic event.

Earthward Flow Bursts in the Magnetotail Driven by Solar Wind Pressure Impulse

  • Kim, Khan-Hyuk;Kwak, Young-Sil;Lee, Jae-Jin;Hwang, Jung-A
    • Journal of Astronomy and Space Sciences
    • /
    • v.25 no.4
    • /
    • pp.375-382
    • /
    • 2008
  • On August 31, 2001, ${\sim}$ 1705 - 1718 UT, Cluster was located near the midnight magnetotail, GSE (x, y, z) ${\sim}$ (-19, - 2,2) RE, and observed fast earthward flow bursts in the vicinity of the neutral sheet. They occurred while the tail magnetic field suddenly increased. Using simultaneous measurements in the solar wind, at geosynchronous orbit, and on the ground, it is confirmed that tail magnetic field enhancement is due to an increased solar wind pressure. In the neutral sheet region, strongly enhanced earthward flow bursts perpendicular to the local magnetic field $(V_{{\perp}x})$ were observed. Auroral brightenings localized in the pre-midnight sector (${\sim}$ 2200 - 2400 MLT) occurred during the interval of the $V_{{\perp}x}$ enhancements. The $V_{{\perp}x}$ bursts started ${\sim}$ 2 minutes before the onset of auroral brightenings. Our observations suggest that the earthward flow bursts are associated with tail reconnection directly driven by a solar wind pressure impulse and that $V_{{\perp}x}$ caused localized auroral brightenings.

Statistical properties of the fast flows accompanied by dipolarization in the near-Earth tail

  • Kim, Hyun-Sook;Lee, Dae-Young;Ahn, Byung-Ho
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.40.4-41
    • /
    • 2010
  • Using magnetic field and plasma moment data obtained by THEMIS satellites(A, D, and E), we selected 203 fast flow events accompanied by dipolarization in the near-Earth region( X(GSM) = -7 ~ -12 RE) and statistically examined their properties. It was found that most of the fast flows show the maximum velocity between 1 minute before dipolarization onset and 2 minutes after onset and proceed earthward and duskward. We also found that only the flows with low velocity of less than 400 km/s are observed at X > -8 RE, while the high velocity flows(as well as low velocity flows) are observed at the further tailward region(X < -8 RE). And most of the tailward flows are slow regardless of distance at X(GSM) = -7 ~ -12 RE. On the other hand, if we consider the fast flow as a bubble (Pontius and Wolf, 1990), the entropy parameter, PV5/3 is an important factor to describe the plasma sheet dynamics. Thus we investigated the relationship between the flow velocity and the amount of change in PV5/3 before and after dipolarization onset and found out that the dipolarizations with more depleted entropy parameter tend to show higher flow velocity. Also we examined how the magnetic field at geosynchronous orbit responds to the fast flow accompanied by dipolarization in the near-earth plasma sheet, using the measurements from GOES 11 and 12 statellites. We found that most of the fast flows do not reach geosynchronous orbit as suggested by Ohtani et al. (2006).

  • PDF