• Title/Summary/Keyword: geostatistical methods

Search Result 47, Processing Time 0.023 seconds

Estimation of geomechanical parameters of tunnel route using geostatistical methods

  • Aalianvari, Ali;Soltani-Mohammadi, Saeed;Rahemi, Zeynab
    • Geomechanics and Engineering
    • /
    • v.14 no.5
    • /
    • pp.453-458
    • /
    • 2018
  • Geomechanical parameters are important factors for engineering projects during design, construction and support stages of tunnel and dam projects. Geostatistical estimation methods are known as one of the most significant approach at estimation of Geomechanical parameters. In this study, Azad dam headrace tunnel is chosen to estimate Geomechanical parameters such as Rock Quality Designation (RQD) and uniaxial compressive strength (UCS) by ordinary kriging as a geostatistical method. Also Rock Mass Rating (RMR) distribution is presented along the tunnel. Main aim in employment of geostatistical methods is estimation of points that unsampled by sampled points.To estimation of parameters, initially data are transformed to Gaussian distribution, next structural data analysis is completed, and then ordinary kriging is applied. At end, specified distribution maps for each parameter are presented. Results from the geostatistical estimation method and actual data have been compared. Results show that, the estimated parameters with this method are very close to the actual parameters. Regarding to the reduction of costs and time consuming, this method can use to geomechanical estimation.

Prediction of Heterogeneous Hydraulic Conductivity and Contaminant Transport for the Landfill on Marine Clay (비균질성을 고려한 해성점토매립장의 수리전도도 추정과 오염이동특성)

  • 장연수;정상용
    • Geotechnical Engineering
    • /
    • v.13 no.1
    • /
    • pp.85-100
    • /
    • 1997
  • The heterogeneity of hydraulic conductivity of Metropolitan Waste Landfill is analized by using geostatistical methods and the contaminant transport analysis is performed by using heterogeneous hydraulic conductivity. The hydraulic conductivity data are obtained from laboratory pressurized permeability tests and the insitu, Slug test. Geostatistical methods used in this analysis are Ordinary Kriging and conditional simulation. It is concluded that the heterogeneities of hydraulic conductivity obtained from conditional simulation are greater than those from Ordinary Kriging analysis. The movement of the contaminant on the hydraulic conductivity with greater heterogeneity obtained from conditional simulation is faster than that observed in Ordinary Kriging analysis.

  • PDF

A Study on Geostatistical Simulation Technique for the Uncertainty Modeling of RMR (RMR의 불확실성 모델링을 위한 지구통계학적 시뮬레이션 기법에 관한 연구)

  • 류동우;김택곤;허종석
    • Tunnel and Underground Space
    • /
    • v.13 no.2
    • /
    • pp.87-99
    • /
    • 2003
  • Geostatistics is defined as the theory of modeling of regionalized variables and is an efficient and elegant methodology for estimation and uncertainty evaluation from limited spatial sample data. In this study, we have made a theoretical comparison between kriging estimation and geostatistical simulation methods. Kriging methods do not preserve the histogram of original data nor their spatial structure, and also provide only an incomplete measure of uncertainty when compared to the simulation methods. A practical procedure of geostatistical simulation is suggested in this study and the technique is demonstrated through an application, in which it was used to identify the spatial distribution of RMR as well as to evaluate the spatial uncertainty. It is concluded that the geostatistical simulation is the appropriate method to quantify the spatial uncertainty of geotechnical variables such as RMA. Therefore, the results from the simulation can be used as useful information for designer's considerations in decision-making under various geological conditions as well as the related terms of contract.

Evaluation of Geostatistical Approaches for better Estimation of Polluted Soil Volume with Uncertainty Evaluation (지구통계 기법을 활용한 토양 오염범위 산정 및 불확실성 평가)

  • Kim, Ho-Rim;Kim, Kyoung-Ho;Yun, Seong-Taek;Hwang, Sang-Il;Kim, Hyeong-Don;Lee, Gun-Taek;Kim, Young-Ju
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.69-81
    • /
    • 2012
  • Diverse geostatistical tools such as kriging have been used to estimate the volume and spatial coverage of contaminated soil needed for remediation. However, many approaches frequently yield estimation errors, due to inherent geostatistical uncertainties. Such errors may yield over- or under-estimation of the amounts of polluted soils, which cause an over-estimation of remediation cost as well as an incomplete clean-up of a contaminated land. Therefore, it is very important to use a better estimation tool considering uncertainties arising from incomplete field investigation (i.e., contamination survey) and mathematical spatial estimation. In the current work, as better estimation tools we propose stochastic simulation approaches which allow the remediation volume to be assessed more accurately along with uncertainty estimation. To test the efficiency of proposed methods, heavy metals (esp., Pb) contaminated soil of a shooting range area was selected. In addition, we suggest a quantitative method to delineate the confident interval of estimated volume (and spatial extent) of polluted soil based on the spatial aspect of uncertainty. The methods proposed in this work can improve a better decision making on soil remediation.

Interpolation of Missing Groundwater-Level Data at the National Groundwater Monitoring Wells (장기 관측 지하수위 결측자료 보완)

  • 정상용;심병완;강동환;원종호;김규범
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.15-22
    • /
    • 2000
  • Long ranged groundwater-level data often have the missing intervals because of the trouble of monitoring systems at the national groundwater monitoring wells. Geostatistical methods are very useful for the supplement of the missing data. Ordinary kriging was applied for the interpolation of the missing groundwater-level data with a smooth sinusoidal variation. Conditional simulation was used for the reproduction of the missing data with high fluctuations. Two geostatistical methods produced the very accurate estimates at the missing intervals and reproduced their original variations. This fact is proved by the cross validation test and graphical method, respectively.

  • PDF

The Distribution Analysis of PM10 in Seoul Using Spatial Interpolation Methods (공간보간기법에 의한 서울시 미세먼지(PM10)의 분포 분석)

  • Cho, Hong-Lae;Jeong, Jong-Chul
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.1
    • /
    • pp.31-39
    • /
    • 2009
  • A lot of data which are used in environment analysis of air pollution have characteristics that are distributed continuously in space. In this point, the collected data value such as precipitation, temperature, altitude, pollution density, PM10 have spatial aspect. When geostatistical data analysis are needed, acquisition of the value in every point is the best way, however, it is impossible because of the costs and time. Therefore, it is necessary to estimate the unknown values at unsampled locations based on observations. In this study, spatial interpolation method such as local trend surface model, IDW(inverse distance weighted), RBF(radial basis function), Kriging were applied to PM10 annual average concentration of Seoul in 2005 and the accuracy was evaluated. For evaluation of interpolation accuracy, range of estimated value, RMSE, average error were analyzed with observation data. The Kriging and RBF methods had the higher accuracy than others.

A Development of Markov Chain Monte Carlo History Matching Technique for Subsurface Characterization (지하 불균질 예측 향상을 위한 마르코프 체인 몬테 카를로 히스토리 매칭 기법 개발)

  • Jeong, Jina;Park, Eungyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.3
    • /
    • pp.51-64
    • /
    • 2015
  • In the present study, we develop two history matching techniques based on Markov chain Monte Carlo method where radial basis function and Gaussian distribution generated by unconditional geostatistical simulation are employed as the random walk transition kernels. The Bayesian inverse methods for aquifer characterization as the developed models can be effectively applied to the condition even when the targeted information such as hydraulic conductivity is absent and there are transient hydraulic head records due to imposed stress at observation wells. The model which uses unconditional simulation as random walk transition kernel has advantage in that spatial statistics can be directly associated with the predictions. The model using radial basis function network shares the same advantages as the model with unconditional simulation, yet the radial basis function network based the model does not require external geostatistical techniques. Also, by employing radial basis function as transition kernel, multi-scale nested structures can be rigorously addressed. In the validations of the developed models, the overall predictabilities of both models are sound by showing high correlation coefficient between the reference and the predicted. In terms of the model performance, the model with radial basis function network has higher error reduction rate and computational efficiency than with unconditional geostatistical simulation.

Application of Geostatistical Methods to Groundwater Flow Analysis in a Heterogeneous Anisotropic Aquifer (불균질.이방성 대수층의 지하수 유동분석에 지구통계기법의 응용)

  • 정상용;유인걸;윤명재;권해우;허선희
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.147-159
    • /
    • 1999
  • Geostatistical methods were used for the groundwater flow analysis in a heterogeneous anisotropic aquifer. This study area is located at Sonbul-myeon in Hampyong-gun of Cheonnam Province which is a hydrogeological project area of KORES(Korea Resources Cooperation). Linear regression analysis shows that the topographic elevation and groundwater level of this area have very high correlation. Groundwater-level contour maps produced by ordinary kriging and cokringing have large differences in mountain areas, but small differences in hill and plain areas near the West Sea. Comparing two maps on the basis of an elevation contour map, a groundwater-level contour map using cokriging is more accurate. Analyzing the groundwater flow on two groundwater-level contour maps, the groundwater of study area flows from the high mountain areas to the plain areas near the West Sea. To verify the enffectiveness of geostatistical methods for the groundwater flow analysis in a heterogeneous anisotropic aquifer, the flow directions of groundwater were measured at two groundwater boreholes by a groundwater flowmeter system(model 200 $GeoFlo^{R}$). The measured flow directions of groundwater almost accord with those estimated on two groundwater-level contour maps produced by geostatistical methods.

  • PDF

Spatial distribution of sediments in the Soyang Lake based on geostatistical analyses (지구통계기법을 이용한 소양호퇴적물 분포연구)

  • Kim, Ki-Young;Hwang, Yoon-Gu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.285-290
    • /
    • 2006
  • To access the volume of sediments deposited after construction of the Soyang Dan and to understand their distribution in the Soyang lake, acoustic profiling using a 10-20 kHz system was conducted along profiles of 227 km length. Profile intervals are approximately 50 and 500 m for longitudinal and cross lines, respectively. The data were gain-controlled and then migrated using the f-k algorithm. After digitization of boundaries of the sediments, the acoustic interpretation was verified through correlating with 38 core samples. Thickness of the sediments averages 0.25 m and reaches to 8.25 m at maximum. Estimated total volume of the sediments based on anisotropic models in geostatistical methods is approximately $5.9{\times}10^6\;m^3$, which is more than twice greater than the earlier estimation based on an isotropic model.

  • PDF

Geostatistical analyses and spatial distribution patterns of tundra vegetation in Council, Alaska

  • Park, Jeong Soo;Lee, Eun Ju
    • Journal of Ecology and Environment
    • /
    • v.37 no.2
    • /
    • pp.53-60
    • /
    • 2014
  • The arctic tundra is an important ecosystem in terms of the organic carbon cycle and climate change, and therefore, detailed analysis of vegetation distribution patterns is required to determine their association. We used grid-sampling method and applied geostatistics to analyze spatial variability and patterns of vegetation within a two-dimensional space, and calculated the Moran's I statistics and semivariance to assess the spatial autocorrelation of vegetation. Spatially autocorrelated vegetation consisted of moss, Eriophorum vaginatum, Betula nana, and Rubus chamaemorus. Interpolation maps and cross-correlograms revealed spatial specificity of Carex aquatilis and a strong negative spatial correlation between E. vaginatum and C. aquatilis. These results suggest differences between the species in water requirements for survival in the arctic tundra. Geostatistical methods could offer valuable information for identifying the vegetation spatial distribution.