• Title/Summary/Keyword: geostatistical approach

Search Result 35, Processing Time 0.021 seconds

Mapping of Temperature and Rainfall Using DEM and Multivariate Kriging (수치표고모델과 다변량 크리깅을 이용한 기온 및 강수 분포도 작성)

  • Park, No-Wook;Jang, Dong-Ho
    • Journal of the Korean Geographical Society
    • /
    • v.43 no.6
    • /
    • pp.1002-1015
    • /
    • 2008
  • We investigate the potential of digital elevation model and multivariate geostatistical kriging in mapping of temperature and rainfall based on sparse weather station observations. By using elevation data which have reasonable correlation with temperature and rainfall, and are exhaustively sampled in the study area, we try to generate spatial distributions of temperature and rainfall which well reflect topographic effects and have less smoothing effects. To illustrate the applicability of this approach, we carried out a case study of Jeju island using observation data acquired in January, April, August, and October, 2005. From the case study results, accounting for elevation via colocated cokriging could reflect detailed topographic characteristics in the study area with less smoothing effects. Colocated cokriging also showed much improved prediction capability, compared to that of traditional univariate ordinary kriging. According to the increase of the magnitude of correlation between temperature or rainfall and elevation, much improved prediction capability could be obtained. The decrease of relative nugget effects also resulted in the improvement of prediction capability.

A Study on the Geostatistical Evaluation of Urban and Environmental Structure of Taegu Metropolitan Region (대구광역도시권의 지리통계적 도시환경구조 평가에 관한 연구)

  • Park, In-Hwan;Jang, Gab-Sue
    • Journal of Environmental Impact Assessment
    • /
    • v.8 no.3
    • /
    • pp.1-11
    • /
    • 1999
  • This study was carried out to evaluate urban environmental structure in Taegu metropolitan region(TMR) with factor analysis, fuzzy set theory, geostatistic and geographic information system(GIS). The factor analysis could choose the representative one out of multiple variables and simplify the evaluation of the urban environmental structure. The fuzzy approach is an attempt to model an aspect of human thinking previously neglected; it starts from the premise that humans don't represent classes of objects as fully disjoint but rather as sets where transitions from membership to non-membership is gradual. The Geographic Information System(GIS) could connect attributes of factor scores derived from factor analysis to digital map by a method so called 'Spatial join'. The results obtained were as follows: Urbanization appearance was concentrated in the large cities, and this appearance was partial extremely, therefore, there has been a structural gap between urban area and agricultural area which was unified into the urban area. All inclinations didn't become worse after sudden urbanization. For example, suburban agriculture was developed as a large scale in the region near the large cities. Then it encouraged farmers in changing their old cultivating methods to the latest ones. But many districts in urban fringe had symptom of urbanization, the districts which were located between large cities have been developed gradually because of urban sprawl, and played a role in connecting each city. Therefore, due to the urbanization, forestry area and agricultural land, well conserved in the agricultural town, could be easily destroyed. In a different way with the urbanization of the Seoul metropolitan region, that of TMR was centralized upon the center of each city, and it was also very partial. But, because so many regions have the potentiality of urbanization, hereafter, the urbanization process in each region is likely to be different multifariously according to the urban management methods.

  • PDF

Fast Bayesian Inversion of Geophysical Data (지구물리 자료의 고속 베이지안 역산)

  • Oh, Seok-Hoon;Kwon, Byung-Doo;Nam, Jae-Cheol;Kee, Duk-Kee
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.3
    • /
    • pp.161-174
    • /
    • 2000
  • Bayesian inversion is a stable approach to infer the subsurface structure with the limited data from geophysical explorations. In geophysical inverse process, due to the finite and discrete characteristics of field data and modeling process, some uncertainties are inherent and therefore probabilistic approach to the geophysical inversion is required. Bayesian framework provides theoretical base for the confidency and uncertainty analysis for the inference. However, most of the Bayesian inversion require the integration process of high dimension, so massive calculations like a Monte Carlo integration is demanded to solve it. This method, though, seemed suitable to apply to the geophysical problems which have the characteristics of highly non-linearity, we are faced to meet the promptness and convenience in field process. In this study, by the Gaussian approximation for the observed data and a priori information, fast Bayesian inversion scheme is developed and applied to the model problem with electric well logging and dipole-dipole resistivity data. Each covariance matrices are induced by geostatistical method and optimization technique resulted in maximum a posteriori information. Especially a priori information is evaluated by the cross-validation technique. And the uncertainty analysis was performed to interpret the resistivity structure by simulation of a posteriori covariance matrix.

  • PDF

Annual Average Daily Traffic Estimation using Co-kriging (공동크리깅 모형을 활용한 일반국도 연평균 일교통량 추정)

  • Ha, Jung-Ah;Heo, Tae-Young;Oh, Sei-Chang;Lim, Sung-Han
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.12 no.1
    • /
    • pp.1-14
    • /
    • 2013
  • Annual average daily traffic (AADT) serves the important basic data in transportation sector. Despite of its importance, AADT is estimated through permanent traffic counts (PTC) at limited locations because of constraints in budget and so on. At most of locations, AADT is estimated using short-term traffic counts (STC). Though many studies have been carried out at home and abroad in an effort to enhance the accuracy of AADT estimate, the method to simplify average STC data has been adopted because of application difficulty. A typical model for estimating AADT is an adjustment factor application model which applies the monthly or weekly adjustment factors at PTC points (or group) with similar traffic pattern. But this model has the limit in determining the PTC points (or group) with similar traffic pattern with STC. Because STC represents usually 24-hour or 48-hour data, it's difficult to forecast a 365-day traffic variation. In order to improve the accuracy of traffic volume prediction, this study used the geostatistical approach called co-kriging and according to their reports. To compare results, using 3 methods : using adjustment factor in same section(method 1), using grouping method to apply adjustment factor(method 2), cokriging model using previous year's traffic data which is in a high spatial correlation with traffic volume data as a secondary variable. This study deals with estimating AADT considering time and space so AADT estimation is more reliable comparing other research.

Improvement in facies discrimination using multiple seismic attributes for permeability modelling of the Athabasca Oil Sands, Canada (캐나다 Athabasca 오일샌드의 투수도 모델링을 위한 다양한 탄성파 속성들을 이용한 상 구분 향상)

  • Kashihara, Koji;Tsuji, Takashi
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.80-87
    • /
    • 2010
  • This study was conducted to develop a reservoir modelling workflow to reproduce the heterogeneous distribution of effective permeability that impacts on the performance of SAGD (Steam Assisted Gravity Drainage), the in-situ bitumen recovery technique in the Athabasca Oil Sands. Lithologic facies distribution is the main cause of the heterogeneity in bitumen reservoirs in the study area. The target formation consists of sand with mudstone facies in a fluvial-to-estuary channel system, where the mudstone interrupts fluid flow and reduces effective permeability. In this study, the lithologic facies is classified into three classes having different characteristics of effective permeability, depending on the shapes of mudstones. The reservoir modelling workflow of this study consists of two main modules; facies modelling and permeability modelling. The facies modelling provides an identification of the three lithologic facies, using a stochastic approach, which mainly control the effective permeability. The permeability modelling populates mudstone volume fraction first, then transforms it into effective permeability. A series of flow simulations applied to mini-models of the lithologic facies obtains the transformation functions of the mudstone volume fraction into the effective permeability. Seismic data contribute to the facies modelling via providing prior probability of facies, which is incorporated in the facies models by geostatistical techniques. In particular, this study employs a probabilistic neural network utilising multiple seismic attributes in facies prediction that improves the prior probability of facies. The result of using the improved prior probability in facies modelling is compared to the conventional method using a single seismic attribute to demonstrate the improvement in the facies discrimination. Using P-wave velocity in combination with density in the multiple seismic attributes is the essence of the improved facies discrimination. This paper also discusses sand matrix porosity that makes P-wave velocity differ between the different facies in the study area, where the sand matrix porosity is uniquely evaluated using log-derived porosity, P-wave velocity and photographically-predicted mudstone volume.