• 제목/요약/키워드: geostationary

검색결과 579건 처리시간 0.024초

Geostationary Orbit Surveillance Using the Unscented Kalman Filter and the Analytical Orbit Model

  • Roh, Kyoung-Min;Park, Eun-Seo;Choi, Byung-Kyu
    • Journal of Astronomy and Space Sciences
    • /
    • 제28권3호
    • /
    • pp.193-201
    • /
    • 2011
  • A strategy for geostationary orbit (or geostationary earth orbit [GEO]) surveillance based on optical angular observations is presented in this study. For the dynamic model, precise analytical orbit model developed by Lee et al. (1997) is used to improve computation performance and the unscented Kalman filer (UKF) is applied as a real-time filtering method. The UKF is known to perform well under highly nonlinear conditions such as surveillance in this study. The strategy that combines the analytical orbit propagation model and the UKF is tested for various conditions like different level of initial error and different level of measurement noise. The dependencies on observation interval and number of ground station are also tested. The test results shows that the GEO orbit determination based on the UKF and the analytical orbit model can be applied to GEO orbit tracking and surveillance effectively.

태양활동을 고려한 태양간섭현상 연구와 무궁화 위성에의 응용 (SUN TRANSIT OUTAGE CONSIDERING SOLOR ACTIVITY AND IT'S APPLICATION TO KOREASAT)

  • 노경민;최규홍;배석희
    • Journal of Astronomy and Space Sciences
    • /
    • 제16권1호
    • /
    • pp.53-60
    • /
    • 1999
  • 태양에 의한 위성전파교란으로 인해 통신이 두절되는 태양간섭 현상(Sun Transit Outage)을 예측해 보았다. 지금까지의 연구는 주로 정지위성의 경우에 국한되었고, 태양모델도 흑점 극소기때의 태양을 가정한 경우가 대부분이었다. 본 연구에서는 정지위성의 경우뿐 아니라 최근에 그 수요가 급증하고 있는 비 정지위성의 경우에도 그 발생가능성을 예측해 보았다. 특히 11년 주기의 태양표면에서의 활동 변화를 고려하여 태양 간섭현상을 보다 정확히 예측해 보았으며 그 영향을 하향링크의 주파수에 따라 알아보았다. 또한 연구 결과를 실제 운용되고 있는 무궁화위성 시스템에 적용시켜보았다.

  • PDF

비정지궤도 위성시스템 및 정지궤도 위성시스템과의 등가전력속밀도 연속곡선 분석 (Analysis of continuous curves of EPFDs between non-GSO/FSS and GSO/FSS)

  • 장재철;양규식;정종혁
    • 한국정보통신학회논문지
    • /
    • 제5권1호
    • /
    • pp.34-40
    • /
    • 2001
  • WRC-2000에서 지상망과 정지궤도(GSO)를 이용한 위성통신 및 방송으로 분배된 Ku(14/11GHz) 및 Ka(30/20GHz)대역의 일부를 비정지궤도(non-GSO) 위성시스템과 공유하여 사용키로 결정함에 따라, 비정지궤도 위성시스템과 기존 정지궤도 위성망간 주파수대역의 공유문제, 간섭기준 및 간섭영향 평가 등에 관한 연구의 필요성이 제기되어 본 논문에서는 우리나라 위성망의 등가전력속밀도를 계산하기 위해 네 가지 분석방법을 사용하였다.

  • PDF

Conceptual Study of GEO and LEO Sensors Characteristics for Monitoring Ocean Color around Korean Peninsula

  • Kang Gumsil;Kang Songdoug;Yong Sangsoon;Kim Jongah;Chang Youngjun;Youn Heongsik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2004년도 Proceedings of ISRS 2004
    • /
    • pp.505-508
    • /
    • 2004
  • Korea Aerospace Research Institute (KARI) has a plan to launch COMS for consistent monitoring of the Korean Peninsula. Korea Geostationary Ocean Color Imager (GOCI) is one of the main payloads of COMS which will provide a monitoring of ocean-colour around the Korean Peninsula from geostationary platforms. Ocean color observation from geostationary platform is required to achieve the proper spatial and temporal resolution for coastal observation mission. In this paper the characteristics of GOCI and LEO sensors are discussed. GOCI will provide the measurement data of 6 visible channels and 2 near-infrared channels (400nm ~ 900nm). The integration time and aperture diameter required to achieve the SNR specification of KGOCI are analyzed.

  • PDF

Radiometric Calibration Method of the GOCI (Geostationary Ocean Color Imager)

  • Kang, Gumsil;Myung, Hwan-Chun;Youn, Heong-Sik
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.60-63
    • /
    • 2006
  • Geostationary Ocean Color Imager (GOCI) is under development to provide a monitoring of oceancolor around the Korean Peninsula from geostationary platforms. It is planned to be loaded on Communication, Ocean, and Meteorological Satellite (COMS) of Korea. In this paper radiometric calibration concept of the GOCI is introduced. The GOCI radiometric response is modeled as a nonlinear system in order to reflect a nonlinear characteristic of detector. In this paper estimation approaches for radiometric parameters of GOCI model are discussed. For the GOCI, the offset signal depends on each spectral channel because dark current offset signal is a function of integration time which is different from channel to channel. The offset parameter can be estimated by using offset signal measurements for two integration time setting is described.

  • PDF

OVERVIEW OF KOREA OCEAN SATELLITE CENTER (KOSC) DEVELOPMENT

  • Yang, Chan-Su;Han, Hee-Jeong;Ahn, Yu-Hwan;Moon, Jeong-Eon;Lee, Nu-Ree
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume I
    • /
    • pp.75-78
    • /
    • 2006
  • The Korea Ocean Satellite Center (KOSC) is under development to establish in line with the launch of the first Korean multi-function geostationary satellite COMS (Communication, Ocean and Meteorological Satellite) scheduled in 2008. KOSC aims to receive, process and distribute Geostationary Ocean Color Sensor (GOCI) data on board COMS in near-real time. In this report, current status of KOSC development is presented in the following categories; site selection for KOSC, antenna design, GOCI data receiving and processing system, data distribution, future works.

  • PDF

정지궤도 인공위성 추진시스템의 온도변화를 통한 배관내 가압제 유입 예측기법 연구 (The Study of Pressurant Inflow Prediction Using Temperature Change of Geostationary Satellite Propellant System)

  • 박응식;전형렬;박봉규;한조영;최성봉;김용민
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.96-99
    • /
    • 2005
  • The geostationary satellite propulsion system has thermistors which can measure liquid propellant temperature at tanks, pipes and etc. In the satellite propulsion system with several tanks, the propellant in the tanks is moved by temperature change and this temperature pattern is constant. In this paper, the temperature change pattern of KOREASAT 1 propulsion system is compared and the prediction study of pressurant inflow using temperature change of geostationary satellite propulsion system is described.

  • PDF

정지궤도 위성의 열해석 모델 보정 (THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE)

  • 전형열;김정훈
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2011년 춘계학술대회논문집
    • /
    • pp.230-235
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very law temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual unit were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.

  • PDF

CURRENT STATUS OF COMS PROGRAM DEVELOPMENT

  • Baek, Myung-Jin;Han, Cho-Young
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2007년도 Proceedings of ISRS 2007
    • /
    • pp.45-48
    • /
    • 2007
  • COMS satellite is a multipurpose satellite in the geostationary orbit, which accommodates multiple payloads of Meteorological Imager, Geostationary Ocean Color Imager and Ka band Satellite Communication Payload in a single spacecraft platform. In this paper, current status of Korea's first geostationary Communication, Ocean and Meteorological Satellte(COMS) program development is introduced. The satellite platform is based on the Astrium EUROSTAR 3000 communication satellite, but creatively combined with MARS Express satellite platform to accommodate three different payloads efficiently for COMS. The system design difficulties are in the different kinds of payload mission requirements of communication and remote sensing purposes and how to combine them into a single satellite to meet the overall satellite requirements. The COMS satellite critical design has been accomplished successfully to meet three different mission payloads. The platform is in Korea, KARI facility for the system integration and test. The expected launch target of COMS satellite is scheduled in June 2009.

  • PDF

지구 정지궤도 위성의 열해석 모델 보정 (THERMAL MODEL CORRELATION OF A GEOSTATIONARY SATELLITE)

  • 전형열;김정훈
    • 한국전산유체공학회지
    • /
    • 제16권3호
    • /
    • pp.59-65
    • /
    • 2011
  • COMS (Communication, Ocean and Meteorological Satellite) is a geostationary satellite and was developed by KARI for communication, ocean and meteorological observations. COMS was tested under vacuum and very low temperature conditions in order to correlate thermal model and to verify thermal design. The test was performed by using KARI large thermal vacuum chamber. The COMS S/C thermal model was successfully correlated versus the 2 thermal balance test phases. After model correlation, temperatures deviation of all individual units were less than $5^{\circ}C$ and global deviation and standard deviation also satisfied the requirements, less than $2^{\circ}C$ and $3^{\circ}C$. The final flight prediction was performed by using the correlated thermal model.