• Title/Summary/Keyword: geostatic simulation

Search Result 3, Processing Time 0.016 seconds

Fast Analysis of Rock Block Behavior on Underground Opening considering Geostatic Stress Conditions (지체응력조건을 고려한 지하공동 주변부 암석블록의 신속한 거동 안정성 분석)

  • Kang, Il-Seok;Song, Jae-Joon
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.64-74
    • /
    • 2019
  • Behavior of a rock block consisting of rock joints during excavation of an underground opening is an important factor for the mechanical stability of the opening. In this study, the behavior of a rock block under different geostatic stress and joint property conditions was analyzed quantitatively. The behavior of the rock block analyzed by 3DEC numerical analysis was compared with that of the theoretical calculation, and the error between the theoretical value and the numerical analysis result was analyzed under various geostatic stress and joint property conditions. The result of the stability analysis of a rock block showed less than 5% of error with numerical simulation result, which verified the applicability of the purposed analytic solution.

A new viewpoint on stability theorem for engineering structural and geotechnical parameter

  • Timothy Chen;Ruei-Yuan Wang;Yahui Meng;Z.Y. Chen
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.475-487
    • /
    • 2024
  • Many uncertainties affect the stability assessment of rock structures. Some of these factors significantly influence technology decisions. Some of these factors belong to the geological domain, and spatial uncertainty measurements are useful for structural stability analysis. This paper presents an integrated approach to study the stability of rock structures, including spatial factors. This study models two main components: discrete structures (fault zones) and well known geotechnical parameters (rock quality indicators). The geostatistical modeling criterion are used to quantify geographic uncertainty by producing simulated maps and RQD values for multiple equally likely error regions. Slope stability theorem would be demonstrated by modeling local failure zones and RQDs. The approach proided is validated and finally, the slope stability analysis method and fuzzy Laypunov criterion are applied to mining projects with limited measurement data. The goals of this paper are towards access to adequate, safe and affordable housing and basic services, promotion of inclusive and sustainable urbanization and participation, implementation of sustainable and disaster-resilient buildings, sustainable human settlement planning and manage. Simulation results of linear and nonlinear structures show that the proposed method is able to identify structural parameters and their changes due to damage and unknown excitations. Therefore, the goal is believed to achieved in the near future by the ongoing development of AI and fuzzy theory.

Comparative Study of Ice Gouge Simulation Considering Ice Keel-Seabed Interactions (빙-해저지반 상호작용을 고려한 빙쇄굴 시뮬레이션 비교연구)

  • Shin, Mun-Beom;Park, Dong-Su;Seo, Young-kyo
    • Journal of Ocean Engineering and Technology
    • /
    • v.33 no.6
    • /
    • pp.556-563
    • /
    • 2019
  • The ice keel gouge and seabed interaction is one of the major considerations in the design of an Arctic pipeline system. Ice keel and seabed interaction engineering models based on experimental data, which give an explicit equation for estimating the ice gouging depth, have been suggested. The suggested equations usually overestimate the ice keel gouging depth. In addition, various types of numerical analyses have been carried out to verify the suggested engineering model equations in comparison to the experimental data. However, most of numerical analysis results were also overestimated compared with the laboratory experimental data. In this study, a numerical analysis considering the contact condition and geostatic stress was carried out to predict the ice keel gouging depth and compared with the previous studies. Considering the previously mentioned conditions, more accurate results were produced compared with the laboratory experiment results and the error rate was reduced compared to previous numerical analysis studies.