• Title/Summary/Keyword: geophysical log

Search Result 57, Processing Time 0.019 seconds

P-Impedance Inversion in the Shallow Sediment of the Korea Strait by Integrating Core Laboratory Data and the Seismic Section (심부 시추코어 실험실 분석자료와 탄성파 탐사자료 통합 분석을 통한 대한해협 천부 퇴적층 임피던스 도출)

  • Snons Cheong;Gwang Soo Lee;Woohyun Son;Gil Young Kim;Dong Geun Yoo;Yunseok Choi
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.138-149
    • /
    • 2023
  • In geoscience and engineering the geological characteristics of sediment strata is crucial and possible if reliable borehole logging and seismic data are available. To investigate the characteristics of the shallow strata in the Korea Strait, laboratory sonic logs were obtained from deep borehole data and seismic section. In this study, we integrated and analyzed the sonic log data obtained from the drilling core (down to a depth of 200 m below the seabed) and multichannel seismic section. The correlation value was increased from 15% to 45% through time-depth conversion. An initial model of P-wave impedance was set, and the results were compared by performing model-based, band-limited, and sparse-spike inversions. The derived P-impedance distributions exhibited differences between sediment-dominant and unconsolidated layers. The P-impedance inversion process can be used as a framework for an integrated analysis of additional core logs and seismic data in the future. Furthermore, the derived P-impedance can be used to detect shallow gas-saturated regions or faults in the shallow sediment. As domestic deep drilling is being performed continuously for identifying the characteristics of carbon dioxide storage candidates and evaluating resources, the applicability of the integrated inversion will increase in the future.

Separation-sounding Filter for Potential Data (퍼텐셜 자료의 깊이 분리)

  • Park, Yeong-Sue;Lim, Mu-Taek;Rim, Hyoung-Rae
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.2
    • /
    • pp.51-56
    • /
    • 2012
  • One of the most critical and essential procedures in the interpretation of gravity and magnetic data is to separate the anomaly due to the specific geologic structure from the summation of effects from a broad variety of geologic sources, especially those of different depths. Separation of the residual anomaly from the regional field is the most simple case of the vertical separation. If the anomaly due to a layer of specific depth can be separated or the depth of the separated layer can be quantitatively determined, it may deserve the separation-sounding. We suggest a wavelength filter whose cutoff frequency is determined by log-power spectrum analysis, as a separation-sounding filter. We applied this filter both to synthetic and real gravity data acquired at Heunghae area, and compared the results with those of Jacobsen's upward continuation filter. These showed that the proposed separation-sounding filter could be a useful tool for interpretation of the vertical geologic structure by stripping the gravity effects of geologic sources down to the desired depth.

Characteristics of the Fracture Distribution on the Granitic Rock by DC and VLF-EM Survey in the Northern Part of Yusong (유성북부 화강암지역에서 전기비저항탐사와 극저주파 전자탐사를 이용한 단열분포 특성)

  • 조성현;김천수;송무영
    • The Journal of Engineering Geology
    • /
    • v.9 no.1
    • /
    • pp.45-57
    • /
    • 1999
  • Groundwater flow in rock mass is controlled by the fractures developed in the area. So, the conductive fractures are very important for groundwater flow in crystalline rock. This study aims to find out the characteristics of the fracture distributed in granitic rock in the northern part of the Yusong area (latitude $36^{\circ}24'18"~36^{\circ}25'08",{\;}longitude{\;}127^{\circ}21'00"~127^{\circ}23'23"$). The electric and EM surveys were carried out in the site to delineate the fracture the fracture zones. Since geophysical survey provides non-unique solution, hydraulic data and dilling log data including BHTV scanning were used as complementary data to achieve the objective of this study. Electric survey(DC) arrays used are schlumberger and dipole-dipole arrays. VLF is used for EM survey. The main charcteristics of the fracture developed in the study aera are that fractures associated with basic dyke cut corss the main fracture zone in NNW and play an important role as hydraulic barrier. In trun, groundwater table in the upstream area is lower than that downstream area.

  • PDF

3-D Visualization of Reservoir Characteristics through GOCAD (GOCAD를 이용한 저류층 속성정보의 3차원 시각화 연구)

  • Gwak Sang-Hwan;Lee Doo Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.4 no.3
    • /
    • pp.80-83
    • /
    • 2001
  • Four seismic reflection horizons in 3-D seismic data, coherence derived from the seismic data, and 38 well logs from the Boonsville Gas Filed in Texas were tried to be integrated and visualized in 3 dimensions. Time surface was constructed from pick times of the reflection horizons. Average velocities to each horizon at 38 well locations were calculated based on depth markers from the well logs and time picks from the 3-D seismic data. The time surface was transformed to depth surface through velocity interpolation. Coherence was calculated on the 3-D seismic data by semblance method. Spatial distribution of the coherence is captured easily in 3-D visualization. Comparing to a time-slice of seismic data, distinctive stratigraphic features could be correctly recognized on the 3-D visualization.

  • PDF

A Scheme for Computing Primary Fields in Modeling of Marine Controlled-Source Electromagnetic Surveys (해양전자탐사 모델링을 위한 1차장 계산법)

  • Kim, Hee-Joon
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.3
    • /
    • pp.185-190
    • /
    • 2011
  • In marine controlled-source electromagnetic (CSEM) modeling, it may be difficult to evaluate primary fields accurately using conventional linear filters because they decay very rapidly with distance. However, since there exists a closed-form solution to the Hankel transform in TM mode for a homogeneous half space, we can assess the accuracy of linear filters for evaluating the Hankel transform. As a result, only nine out of 36 source-receiver pairs show that EM fields decrease linearly in semi-log scale with an increase of source-receiver distance, while EM fields are either 0 or not reduced significantly due to an effect of the air layer. There also exist closed-form solutions for the nine pairs, and the others can be evaluated accurately with a relatively short filter. This paper proposes a method which uses closed-form solutions for TM-mode Hankel transforms and a filter with 61 coefficients for TE-mode ones.

Estimation of $CO_2$ saturation from time-lapse $CO_2$ well logging in an onshore aquifer, Nagaoka, Japan (일본 Nagaoka 육상 대수층에서 시간차 $CO_2$ 물리검층으로부터 $CO_2$ 포화도의 추정)

  • Xue, Ziqiu;Tanase, Daiji;Watanabe, Jiro
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.19-29
    • /
    • 2006
  • The first Japanese pilot-scale $CO_2$ sequestration project has been undertaken in an onshore saline aquifer, near Nagaoka in Niigata prefecture, and time-lapse well logs were carried out in observation wells to detect the arrival of injected $CO_2$ and to evaluate $CO_2$ saturation in the reservoir. $CO_2$ was injected into a thin permeable zone at the depth of 1110m at a rate of 20-40 tonnes per day. The total amount of injected $CO_2$ was 10400 tonnes, during the injection period from July 2003 to January 2005. The pilot-scale demonstration allowed an improved understanding of the $CO_2$ movement in a porous sandstone reservoir, by conducting time-lapse geophysical well logs at three observation wells. Comparison between neutron well logging before and after the insertion of fibreglass casing in observation well OB-2 showed good agreement within the target formation, and the higher concentration of shale volume in the reservoir results in a bigger difference between the two well logging results. $CO_2$ breakthrough was identified by induction, sonic, and neutron logs. By sonic logging, we confirmed P-wave velocity reduction that agreed fairly well with a laboratory measurement on drilled core samples from the Nagaoka site. We successfully matched the history changes of sonic P-wave velocity and estimated $CO_2$ saturation a(ter breakthrough in two observation wells out of three. The sonic-velocity history matching result suggested that the sweep efficiency was about 40%. Small effects of $CO_2$ saturation on resistivity resulted in small changes in induction logs when the reservoir was partially saturated. We also found that $CO_2$ saturation in the $CO_2$-bearing zone responded to suspension of $CO_2$ injection.

Identification of the Transmissive Fractures in the Vicinity of waterway Tunnel (도수로터널 주변 지역의 지하수 유동성 단열 규명)

  • 이병대;이인호;추창오;함세영;성익환;황세호
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.33-44
    • /
    • 2002
  • A field technique for assessing the transmissive fractures in an aquifer was applied to a fractured rock formation in Youngchun area Korea. Geological mapping and detailed acoustic borehole teleview(BHTV) logging were performed to obtain information about the fractures. The study area consists predominantly of two types of fractures. The fracture sets of low angle partings such as bedding and sheeting plains have strike N70-80$^{\circ}$W, 25$^{\circ}$-30$^{\circ}$SW and N3S$^{\circ}$W, 12$^{\circ}$NE, respectively. In areas of high fractures, on the other hand, the major fracture sets show strike N80$^{\circ}$W and dip 70$^{\circ}$-85$^{\circ}$SW, N10$^{\circ}$E.85$^{\circ}$SE in sedimentry rocks, N40-50$^{\circ}$E.85$^{\circ}$SE/85$^{\circ}$NE, N70$^{\circ}$E.80$^{\circ}$SE, and N7$^{\circ}$-75$^{\circ}$W.80$^{\circ}$SW in granites and volcanic rocks. Injection tests have been performed to identify discrete production zones and quantify the vertical distribution of hydraulic conductivity. The calculated hydraulic conductivities range from 3.363E-10 to 2.731E-6, showing that the difference between maximum and minimum value is four order of magnitude. Dominant section in hydraulic conductivity is extensively fractured. Geophysical logging was carried out to clarify characterization of the distribution of fracture zones. Transmissive fractures were evaluated through the comparison of the results obtained by each method. The temperature logs appeared to be a good indicator that can distinguish a high transmissive fractures from a common fractures in hydraulic conductivity. In numerous cases, evidence of fluid movement was amplified in the temperature gradient log. The fracture sets of N70-80$^{\circ}$W.60-85$^{\circ}$NE/SW N75-80$^{\circ}$W.25-30$^{\circ}$SW, N50-64$^{\circ}$W.60-85$^{\circ}$NE, N35-45$^{\circ}$E.65-75$^{\circ}$SE, and N65-72$^{\circ}$E.80$^{\circ}$SE/60$^{\circ}$NW were idenfied as a distinct transmissive fractures through the results of each tests.

Near-surface Shear-wave Velocities Derived from Microtremors and Teleseismic Data at the Hwacheon Seismic Station (상시미동 및 원거리 지진 자료로부터 구한 화천 지진관측소의 천부 횡파속도구조)

  • Yun, Won Young;Park, Sun-Cheon;Kim, Ki Young
    • Geophysics and Geophysical Exploration
    • /
    • v.16 no.3
    • /
    • pp.190-195
    • /
    • 2013
  • We estimated near-surface shear-wave velocity (${\nu}_s$) at the Hwacheon seismic station using a geologic log of a well, microtremors recorded during a period of 56 days, and records of three teleseismic events ($M_w{\geq}6.0$). The vs of the 10-m thick soil layer (${\nu}^s_s$= 296 m/s) was determined from horizontal-to-vertical spectral ratios of microtremors recorded at the surface. The average ${\nu}_s$ ($\bar{\nu}_s$= 1,309 m/s) from the surface to the 96-m depth of a borehole sensor, was computed using spectral coherence analyses of data recorded by surface- and borehole-sensors for the three teleseismic events. Using these calculated values of ${\nu}^s_s$ and $\bar{\nu}_s$, the computed bedrock ${\nu}_s$ is 2,150 m/s and the time-averaged ${\nu}_s$ to a 30-m depth is 696 m/s. Accordingly the Hwacheon seismic station is regarded as a relatively good site. The deduced near-surface ${\nu}_s$ can be used for further quantitative evaluation of site amplification and earthquake hazard.

Overpressure prediction of the Efomeh field using synthetic data, onshore Niger Delta, Nigeria (합성탄성파 기록을 이용한 나이지리아의 나이저 삼각주 해안 에포메(Efomeh) 지역의 이상고압 예측)

  • Omolaiye, Gabriel Efomeh;Ojo, John Sunday;Oladapo, Michael Ilesanmi;Ayolabi, Elijah A.
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.50-57
    • /
    • 2011
  • For effective and accurate prediction of overpressure in the Efomeh field, located in the Niger delta basin of Nigeria, integrated seismic and borehole analyses were undertaken. Normal and abnormal pore pressure zones were delineated based on the principle of normal and deviation from normal velocity trends. The transition between the two trends signifies the top of overpressure. The overpressure tops were picked at regular intervals from seismic data using interval velocities obtained by applying Dix's approximation. The accuracy of the predicted overpressure zone was confirmed from the sonic velocity data of the Efomeh 01 well. The variation to the depth of overpressure between the predicted and observed values was less than 10mat the Efomeh 01 well location, with confidence of over 99 per cent. The depth map generated shows that the depth distribution to the top of the overpressure zone of the Efomeh field falls within the sub-sea depth range of 2655${\pm}$2m (2550 ms) to 3720${\pm}$2m (2900 ms). This depth conforms to thick marine shales using the Efomeh 01 composite log. The lower part of the Agbada Formation within the Efomeh field is overpressured and the depth of the top of the overpressure does not follow any time-stratigraphic boundary across the field. Prediction of the top of the overpressure zone within the Efomeh field for potential wells that will total depth beyond 2440m sub-sea is very important for safer drilling practice as well as the prevention of lost circulation.

Well Log Analysis using Intelligent Reservoir Characterization (지능형 저류층 특성화 기법을 이용한 물리검층 자료 해석)

  • Lim Song-Se
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.2
    • /
    • pp.109-116
    • /
    • 2004
  • Petroleum reservoir characterization is a process for quantitatively describing various reservoir properties in spatial variability using all the available field data. Porosity and permeability are the two fundamental reservoir properties which relate to the amount of fluid contained in a reservoir and its ability to flow. These properties have a significant impact on petroleum fields operations and reservoir management. In un-cored intervals and well of heterogeneous formation, porosity and permeability estimation from conventional well logs has a difficult and complex problem to solve by conventional statistical methods. This paper suggests an intelligent technique using fuzzy logic and neural network to determine reservoir properties from well logs. Fuzzy curve analysis based on fuzzy logics is used for selecting the best related well logs with core porosity and permeability data. Neural network is used as a nonlinear regression method to develop transformation between the selected well logs and core analysis data. The intelligent technique is demonstrated with an application to the well data in offshore Korea. The results show that this technique can make more accurate and reliable properties estimation compared with previously used methods. The intelligent technique can be utilized a powerful tool for reservoir characterization from well logs in oil and natural gas development projects.