• Title/Summary/Keyword: geometry parameters

Search Result 1,117, Processing Time 0.024 seconds

Flow Characteristics and Filling Time Estimation for Underfill Process (언더필 공정에 대한 유동 특성과 침투 시간 예측 연구)

  • Sim, Hyung-Sub;Lee, Seong-Hyuk;Kim, Jong-Min;Shin, Young-Eui
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.45-50
    • /
    • 2007
  • The present study is devoted to investigate the transient flow and to estimate the filling time fur underfill process by using the numerical model established on the fluid momentum equation. For optimization of the design and selection of process parameters, this study extensively presents an estimation of the filling time in the view points of some important factors related to underfill materials and flip-chip geometry. From the results, we conclude that the filling time changes with respect to the under fill materials because of different viscosity, surface tension coefficient and contact angle. It reveals that, as the gap height increases, the filling time decreases substantially, and goes to the saturated values.

Modal analysis of viscoelastic nanorods under an axially harmonic load

  • Akbas, Seref D.
    • Advances in nano research
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 2020
  • Axially damped forced vibration responses of viscoelastic nanorods are investigated within the frame of the modal analysis. The nonlocal elasticity theory is used in the constitutive relation of the nanorod with the Kelvin-Voigt viscoelastic model. In the forced vibration problem, a cantilever nanorod subjected to a harmonic load at the free end of the nanorod is considered in the numerical examples. By using the modal technique, the modal expressions of the viscoelastic nanorods are presented and solved exactly in the nonlocal elasticity theory. In the numerical results, the effects of the nonlocal parameter, damping coefficient, geometry and dynamic load parameters on the dynamic responses of the viscoelastic nanobem are presented and discussed. In addition, the difference between the nonlocal theory and classical theory is investigated for the damped forced vibration problem.

Numerical Simulation of the Flow Field inside a New 1 Ton/Day Entrained-Flow Gasifier in KIER

  • Li, Xiang-Yang;Choi, Young-Chan;Park, Tae-Jun
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2000.04a
    • /
    • pp.43-50
    • /
    • 2000
  • The flow field of a 1 Ton/Day entrained-flow gasifier constructed in KIER was numerical simulate in this paper. The standard $k-{\varepsilon}$ turbulence model and simple procedure was used with the Primitive-Variable methods during computation. In order to find the influence factors of the flow field which may have great effects on coal gasification process inside gasifier, difference geometry parameters at various operating conditions were studied by simulation methods. The calculation results show that the basic shape of the flow field is still parabolic even the oxygen gas is injected from the off-axis position. There exist an obvious external recirculation zone with a length less than 1.0m and a small internal recirculation region nears the inlet part. The flow field inside the new gasifier is nearly similar as that of the old 0.5T/D gasifier at same position if the design of burner remains unchanged.

  • PDF

Surface-based Geometric Registration of Aerial Images and LIDAR Data

  • Lee, Impyeong;Kim, Seong-Joon;Choi, Yunsoo
    • Korean Journal of Geomatics
    • /
    • v.5 no.1
    • /
    • pp.35-42
    • /
    • 2005
  • Precise geometric registration is required in multi-source data fusion process to obtain synergistic results successfully. However, most of the previous studies focus on the assumption of perfect registration or registration in a limited local area with intuitively derived simple geometric model. In this study, therefore, we developed a robust method for geometric registration based on a systematic model that is derived from the geometry associated with the data acquisition processes. The key concept of the proposed approach is to utilize smooth planar patches extracted from LIDAR data as control surfaces to adjust exterior orientation parameters of the aerial images. Registration of the simulated LIDAR data and aerial images was performed. The experimental results show that the RMS value of the geometric discrepancies between two data sets is decreased to less than ${\pm}0.30\;m$ after applying suggested registration method.

  • PDF

Combustion Instability Prediction Using 1D Thermoacoustic Model in a Gas Turbine Combustor (가스터빈 연소기에서 1D 열음향 모델을 이용한 연소불안정 예측)

  • Kim, Jin Ah;Kim, Daesik
    • Journal of ILASS-Korea
    • /
    • v.20 no.4
    • /
    • pp.241-246
    • /
    • 2015
  • The objective of the current study is to develop an 1D thermoacoustic model for predicting basic characteristics of combustion instability and to investigate effects of key parameters on the instabilities such as effects of flame geometry and acoustic boundary conditions. Another focus of the paper is placed on limit cycle prediction. In order to improve the model accuracy, the 1D model was modified considering the actual flame location and flame length (i.e. distribution of time delay). As a result, it is found that the reflection coefficients have a great effect on the growth rate of the instabilities. In addition, instability characteristics are shown to be strongly dependent upon the fuel compositions.

Dynamic behavior of piezoelectric bimorph beams with a delamination zone

  • Zemirline, Adel;Ouali, Mohammed;Mahieddine, Ali
    • Steel and Composite Structures
    • /
    • v.19 no.3
    • /
    • pp.759-776
    • /
    • 2015
  • The First Order Shear Deformation Theory (FOSDT) is considered to study the dynamic behavior of a bimorph beam. A delamination zone between the upper and the lower layer has been taken into consideration; the beam is discretised using the finite elements method (FEM). Several parameters are taken into consideration like structural damping, the geometry, the load nature and the configurations of the boundary conditions. Results show that the delamination between the upper and the lower layer affects considerably the actuation.

Inelastic analysis for the post-collapse behavior of concrete encased steel composite columns under axial compression

  • Ky, V.S.;Tangaramvong, S.;Thepchatri, T.
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1237-1258
    • /
    • 2015
  • This paper proposes a simple inelastic analysis approach to efficiently map out the complete nonlinear post-collapse (strain-softening) response and the maximum load capacity of axially loaded concrete encased steel composite columns (stub and slender). The scheme simultaneously incorporates the influences of difficult instabilizing phenomena such as concrete confinement, initial geometric imperfection, geometric nonlinearity, buckling of reinforcement bars and local buckling of structural steel, on the overall behavior of the composite columns. The proposed numerical method adopts fiber element discretization and an iterative M${\ddot{u}}$ller's algorithm with an additional adaptive technique that robustly yields solution convergence. The accuracy of the proposed analysis scheme is validated through comparisons with various available experimental benchmarks. Finally, a parametric study of various key parameters on the overall behaviors of the composite columns is conducted.

Development of CFD Based Stern Form Optimization Method (CFD 를 이용한 선미선형 최적화 기법 개발)

  • Kim, Hee-Jung;Chun, Ho-Hwan;Choi, Hee-Jong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.44 no.6
    • /
    • pp.564-571
    • /
    • 2007
  • In the present study, stern form optimization has been carried out using computational fluid dynamics (CFD) techniques. The viscous pressure drag has been minimized to optimize stern shape. Parametric modification function has been used to modify the shape of the hull. By the use of the parametric modification function and algebraic scheme to grid manipulation, the initial ship geometry was easily deformed according to change of design parameters. For purpose of illustration, KRISO 319K VLCC (KVLCC) is chosen for example ship to demonstrate stern form optimization. The numerical results indicate that the optimized hull yields a reduction in viscous resistance.

An Analysis of a Thermo-plastic Melt Flow in the Metering Zone of a Polymer Extruder (고분자 압출기에 있어서 계량부 용융수지의 유동해석)

  • Choi, Man Sung;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.7-12
    • /
    • 2012
  • Extrusion is one of the most important operations in the polymer-processing industry. Development of models for extrusion and computer tools offer a route to developing reliable and optimized process designs. The models are based on the analysis of physical phenomena encountered during the process. Balance equations for mass, momentum and energy are fundamental to the problem. A predictive computer model has been developed for the single screw extruders with conventional screws of different geometry. The model takes into account melting zones of the extruder and describes an operation of the extruder system, making it possible to predict mass flow rate of the polymer, pressure and velocity profiles along the extruder screw channel. The simulation parameters are the material and rheological properties of the polymer; the screw pitch, and screw speed.

A Study on the Computer-Aided Design System of Axisymmetric Deep Drawing Process(II) (축대칭 디프 드로잉 제품의 공정설계 시스템에 관한 연구(II))

  • Park, S.B.;Choi, Y.;Kim, B.M.;Choi, J.C.;Lee, J.
    • Transactions of Materials Processing
    • /
    • v.5 no.1
    • /
    • pp.61-71
    • /
    • 1996
  • A computer-aided process design system for axisymmetric deep drawing products has been developed. An approach to the system is based on the knowledge based system. Knowledges for the system are formulated from the plasticity theory handbooks experimental results and empirical knowhow of the field experts. the system is composed of four main modules such as geometrical design test & rectification and user modification. The input to the system is final sheet-metal object geometry and the output from the system is process sequence with intermedi-ate objects geometries and process parameters, such as drawing load blank holding force clearance cup-drawing coefficient.

  • PDF