• Title/Summary/Keyword: geometrical parameters

Search Result 746, Processing Time 0.066 seconds

Self Heating Effects in Sub-nm Scale FinFETs

  • Agrawal, Khushabu;Patil, Vilas;Yoon, Geonju;Park, Jinsu;Kim, Jaemin;Pae, Sangwoo;Kim, Jinseok;Cho, Eun-Chel;Junsin, Yi
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.2
    • /
    • pp.88-92
    • /
    • 2020
  • Thermal effects in bulk and SOI FinFETs are briefly reviewed herein. Different techniques to measure these thermal effects are studied in detail. Self-heating effects show a strong dependency on geometrical parameters of the device, thereby affecting the reliability and performance of FinFETs. Mobility degradation leads to 7% higher current in bulk FinFETs than in SOI FinFETs. The lower thermal conductivity of SiO2 and higher current densities due to a reduction in device dimensions are the potential reasons behind this degradation. A comparison of both bulk and SOI FinFETs shows that the thermal effects are more dominant in bulk FinFETs as they dissipate more heat because of their lower lattice temperature. However, these thermal effects can be minimized by integrating 2D materials along with high thermal conductive dielectrics into the FinFET device structure.

Experimental investigation of force-distribution in high-strength bolts in extended end-plate connections

  • Abdalla, K.M.;Abu-Farsakh, G.A.R.;Barakat, S.A.
    • Steel and Composite Structures
    • /
    • v.7 no.2
    • /
    • pp.87-103
    • /
    • 2007
  • This paper presents some of the results from an experimental research project on the behavior of extended end-plate connections subjected to moment conducted at the Structural Laboratory of Jordan University of Science and Technology. Since the connection behavior affects the structural frame response, it must be included in the global analysis and design. In this study, the behavior of six full-scale stiffened and unstiffened cantilever connections of HEA- and IPE-sections has been investigated. Eight high strength bolts were used to connect the extended end-plate to the column flange in each case. Strain gauges were installed inside each of the top six bolts in order to obtain experimentally the actual tension force induced within each bolt. Then the connection behavior is characterized by the tension force in the bolt, extended end-plate behavior, moment-rotation relation, and beam and column strains. Some or all of these characteristics are used by many Standards; therefore, it is essential to predict the global behavior of column-beam connections by their geometrical and mechanical properties. The experimental test results are compared with two theoretical (equal distribution and linear distribution) approaches in order to assess the capabilities and accuracy of the theoretical models. A simple model of the joint is established and the essential parameters to predict its strength and deformational behavior are determined. The equal distribution method reasonably determined the tension forces in the upper two bolts while the linear distribution method underestimated them. The deformation behavior of the tested connections was characterized by separation of the column-flange from the extended end-plate almost down to the level of the upper two bolts of the lower group and below this level the two parts remained in full contact. The neutral axis of the deformed joint is reasonably assumed to pass very close to the line joining the upper two bolts of the lower group. Smooth monotonic moment-rotation relations for the all tested frames were observed.

Accelerated Life Prediction for STS301L Gas Welded Joint (I) - Fillet Type - (STS301L 가스용접 이음재의 가속수명예측 (I) - Fillet Type -)

  • Baek, Seung-Yeb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.4
    • /
    • pp.467-474
    • /
    • 2010
  • Stainless steel sheets are widely used as the structural material for railroad cars and commercial vehicles. Structures made of stainless steel sheets are commonly fabricated by gas welding, For the fatigue design of gas welded joints such as fillet joints, it is necessary to obtain design information of the stress distribution at the weldment as well as the fatigue strength of the gas-welded joints. Further, the influence of the geometrical parameters of gas-welded joints on stress distribution and fatigue strength must be evaluated. in this study, ${\Delta}P-N_f$ curves were obtained by fatigue tests. and, the ${\Delta}P-N_f$ curves were rearranged on the basis of the ${\Delta}{\sigma}-N_f$ relation for the hot-spot stresses at the gas-welded joints. These results, were used for conducting an accelerated life test(ALT) From the experiment results, an acceleration model was derived and factors were estimated. The objective is to obtain the information required for the analysis of the fatigue lifetime of fillet welded joints and for data analysis by the statistic reliability method to save time and cost and to develop optimum accelerated life prediction plans.

Variable-color Light-emitting Diodes Using GaN Microdonut Arrays

  • Tchoe, Youngbin;Jo, Janghyun;Kim, Miyoung;Heo, Jaehyuk;Yoo, Geonwook;Sone, Cheolsoo;Yi, Gyu-Chul
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.280-280
    • /
    • 2014
  • We report the fabrication and electroluminescent characteristics of GaN/InxGa1-xN microdonut-shaped light-emitting diode (LED) microarrays as variable-color emitters. The diameter, width, height, and period of the GaN microdonuts were controlled by their growth parameters and the geometrical factors of the growth mask patterns. For the fabrication of microdonut LEDs, p-GaN/p-AlxGa1-xN/u-GaN/u-InxGa1-xN heteroepitaxial layers were coated on the entire surface of n-GaN microdonuts. The microdonut LED arrays showed strong light emission, which could be seen with the unaided eye under normal room illumination. Additionally, magnified optical images of microdonut LED arrays exhibited microdonut-shaped light emissions having spatially resolved blue and green colors. Their electroluminescence spectra had two dominant peaks at 460 and 560 nm. With increasing applied voltage, the intensity of the blue emission peak increased much faster than that of the green emission peak, indicating that the color of the LEDs is tunable. We also demonstrated that EL spectra of the devices could be controlled by changing the size of microdonut LEDs. What we want to emphasize here with the microdonut LEDs is that they have additional inner sidewall facets which did not exist for other typical three-dimensional structures including nanopyramids and nanorods, and that InxGa1-xN single quantum well formed on the inner sidewall facets had unique thickness and chemical composition, which generated additional EL color. The origin of the electroluminescence peaks was investigated by structural characterizations and chemical analyses.

  • PDF

Fundamentals of Particle Fouling in Membrane Processes

  • Bhattacharjee Subir;Hong Seungkwan
    • Korean Membrane Journal
    • /
    • v.7 no.1
    • /
    • pp.1-18
    • /
    • 2005
  • The permeate flux decline due to membrane fouling can be addressed using a variety of theoretical stand-points. Judicious selection of an appropriate theory is a key toward successful prediction of the permeate flux. The essential criterion f3r such a decision appears to be a detailed characterization of the feed solution and membrane properties. Modem theories are capable of accurately predicting several properties of colloidal systems that are important in membrane separation processes from fundamental information pertaining to the particle size, charge, and solution ionic strength. Based on such information, it is relatively straight-forward to determine the properties of the concentrated colloidal dispersion in a polarized layer or the cake layer properties. Incorporation of such information in the framework of the standard theories of membrane filtration, namely, the convective diffusion equation coupled with an appropriate permeate transport model, can lead to reasonably accurate prediction of the permeate flux due to colloidal fouling. The schematic of the essential approach has been delineated in Figure 5. The modern approaches based on appropriate cell models appear to predict the permeate flux behavior in crossflow membrane filtration processes quite accurately without invoking novel theoretical descriptions of particle back transport mechanisms or depending on adjust-able parameters. Such agreements have been observed for a wide range of particle size ranging from small proteins like BSA (diameter ${\~}$6 nm) to latex suspensions (diameter ${\~}1\;{\mu}m$). There we, however, several areas that need further exploration. Some of these include: 1) A clear mechanistic description of the cake formation mechanisms that clearly identifies the disorder to order transition point in different colloidal systems. 2) Determining the structure of a cake layer based on the interparticle and hydrodynamic interactions instead of assuming a fixed geometrical structure on the basis of cell models. 3) Performing well controlled experiments where the cake deposition mechanism can be observed for small colloidal particles (< $1\;{\mu}m$). 4) A clear mechanistic description of the critical operating conditions (for instance, critical pressure) which can minimize the propensity of colloidal membrane fluting. 5) Developing theoretical approaches to account for polydisperse systems that can render the models capable of handing realistic feed solutions typically encountered in diverse applications of membrane filtration.

A Study on the Numerical Wave Propagation Properties of the Finite Difference-Time Domain(FD-TD) Method for EM Wave Problems (전자파 문제에 대한 시간영역-유한차분법의 수치파 전파모델의 성질에 관한 연구)

  • 김인석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.19 no.8
    • /
    • pp.1595-1611
    • /
    • 1994
  • In this paper, the numerical wave propagation properties of the finite difference-time domain(FD-TD) method is investigated as a discrete model describing electromagnetic(EM) wave propagation phenomena. The leap-frog approximation of Maxwell's curl equations in time-space simulates EM wave propagation in terms of the numerical characteristic and the domain of dependence. A geometrical interpretation of the FD-TD numerical procedure is presented. The numerical dispersion error due to the leap-frog approximation and its dependence on the stability factor are illustrated. The FD-TD method using the leap-frog approximation is inherently a descriptive model. Thus, not only any physical picture about EM wave propagation phenomena can be drawn through this model, but also physical or engineering parameters in the frequency domain can be extracted from descriptive results. E-plane filter characteristics in the WR-28 rectangular waveguide and reflection property of an inductive iris in the WR-90 rectangluar waveguide extracted from simulation of the FD-TD model is included.

  • PDF

The ab Initio Quantum Mechanical Investigation for the Weakly Bound $H^+_{2n+1}$(n=1-6) Complexes (약한 결합을 갖는 $H^+_{2n+1}$(n=1-6) complex들에 대한 순 이론 양자역학적 연구)

  • In, Eun Jeong;Seo, Hyeon Il;Kim, Seung Jun
    • Journal of the Korean Chemical Society
    • /
    • v.45 no.5
    • /
    • pp.401-412
    • /
    • 2001
  • The geometrical parameters, vibrational frequencies, and dissociation energies for $H_{2n+1}^+$ (n=1~6) clusters have been investigated using high level ab initio quantum mechanical techniques with large basis sets. The equilibrium geometries have been optimized at the self-consistent field (SCF), the single and double excitation configuration interaction (CISD), the coupled cluster with single and double excitation (CCSD), and the CCSD with connected triple excitations [CCSD(T)] levels of theory. The highest levels of theory employed in this study are TZ2P+d CCSD(T) up to $H^+_g$ and TZ2P CCSD(T) for $H_{11}^+$ and $H_{13}^+$. Harmonic vibrational frequencies are also determined at the SCF level of theory with various basis sets and confirm that all the optimized geometries are true minima. The dissociation energies, $D_e$, for $H_{2n+1}^+$ (n=26) have been predicted using energy differences at each optimized geometry and zero-point vibrational energies(ZPVEs) have been considered to compare with experimental dissociation energies, $D_0$.

  • PDF

A Study on the Exhaust Gas Recirculation in a MILD Combustion Furnace by Using the Coanda Nozzle Effect (MILD 연소로에서 Coanda 노즐 효과를 이용한 배기가스 재순환에 관한 연구)

  • Ha, Ji Soo;Shim, Sung Hoon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.12
    • /
    • pp.967-972
    • /
    • 2013
  • A MILD (Moderate and Intense Low oxygen Dilution) combustion, which is effective in the reduction of NOx, is considerably affected by the recirculation flow rate of hot exhaust gas to the combustion furnace. The present study used the MILD combustor, which has coaxial cylindrical tube. The outside tube of the MILD combustor corresponds to the exhaust gas passage and the inner side tube is the furnace passage. A numerical analysis was accomplished to elucidate the characteristics of exhaust gas entrainment toward the inner furnace with the changes of coanda nozzle geometrical parameters, nozzle passage gap length, nozzle passage length, nozzle angle and expansion length. The optimal configuration of coanda nozzle for the best entrainment flow rate was gap length, 0.5 mm, expansion angle, 4o and expansion length, 146 mm. The nozzle passage length was irrelevant to the exhaust gas entrainement.

Finite element dynamic analysis of laminated composite shell structures considering geometric nonlinear effects (기하학적 비선형 효과를 고려한 복합재료 적층 쉘 구조의 유한요소 동적 해석)

  • Lee, Sang-Youl
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.11
    • /
    • pp.5979-5986
    • /
    • 2013
  • This study carried out a geometrical nonlinear dynamic analysis of laminated composite shell structures. Based on the first-order shear deformation shell theory and nonlinear formulation of Sanders, the Newmark method and Newton-Raphson iteration are used for dynamic solution considering nonlinear effects. The effects of radius, fiber angles, and layup sequences on the nonlinear dynamic response for various parameters are studied using a nonlinear dynamic finite element program developed for this study. The several numerical results were in good agreement with those reported by other investigators for square composite plates, and the new results reported in this paper show the significant interactions between the radius, fiber angles and layup sequence in the laminate. Key observation points are discussed and a brief design guideline of laminated composite shells is given.

COMPUTER SIMULATION OF INTRAMOLECULAR HYDROGEN TRANSFER TO CARBONYL OXYGEN BY A MONTE CARLO METHOD: PHOTOREACTIONS VIA REMOTE PROTON TRANSFER IN BENZOYLBENZOATES

  • Hasegawa, Tadashi;Yamazaki, Yuko;Yoshioka, Michikazu
    • Journal of Photoscience
    • /
    • v.4 no.2
    • /
    • pp.61-67
    • /
    • 1997
  • The model based on the idea that the p$_y$-orbital of the carbonyl oxygen is responsible to receiving hydrogen was devised for simulation of intramolecular hydrogen transfer. A Monte Carlo method was applied to free rotation of a molecular chain performed by changing the dihedral angles, and a "hit" was defined as the case when the migrating hydrogen comes within the region defined as the p$_y$-orbital and satisfies all the geometrical requirements for abstraction. A set of parameters was employed for defining the region and the requirements; $\tau$ was defined as the angle formed between O...H vector and its projection on the mean plane of the carbonyl group (- 43$\circ$ < $\tau$ < + 43$\circ$), $\Delta$ as the C=O...H angle (90 -15$\circ$ < $\Delta$ < 90 + 15$\circ$), $\theta$ as the O...H - C angle ( 180 - 80$\circ$< 0 < 180 + 80$\circ$), d as the distance from the center of the lobe of the p$_y$-orbital to hydrogen (0 < d < 1.04 ${\AA}$). The minimum value for the distance between carbonyl oxygen (O$_1$) and the migrating hydrogen (H$_i$) and for that between non-bonded atoms except the pair of O$_1$ and H$_i$ were assumed to be 0.52 ${\AA}$ and 1.54 ${\AA}$, respectively. The apphcation of this model to intramolecular $\beta$-, $\gamma$-, $\delta$-, $\epsilon$-, and $\zeta$-hydrogen abstraction in ketones and $\eta$- and $\theta$- proton transfer in oxoesters gave good results reflecting their photochemical behavior. The model was also used for prediction of photoreactivities of 2-(N,N-dibenzylamino)ethyl 2-, 3- and 4-benzoylbenzoate (1a - c). (1a - c).

  • PDF