• 제목/요약/키워드: geometrical limitation

검색결과 43건 처리시간 0.02초

Magnetron Sputter Coating of Inner Surface of 1-inch Diameter Tube

  • Han, Seung-Hee;An, Se-Hoon;Song, In-Seol;Lee, Keun-Hyuk;Jang, Seong-Woo
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2015년도 제49회 하계 정기학술대회 초록집
    • /
    • pp.135-135
    • /
    • 2015
  • Tubes are of extreme importance in industries as for fluid channels or wave guides. Furthermore, some weapon systems such as cannons use the tubes as gun barrels. To increase the service life of such tubes, a protective coating must be applied to the tubes' inner surface. However, the coating methods applicable to the inner surface of the tubes are very limited due to the geometrical restriction. A small-diameter cylindrical magnetron sputtering gun can be used to deposit coating layers on the inner surface of the large-bore tubes. However, for small-bore tubes with the inner diameter of one inch (~25 mm), the magnetron sputtering method can hardly be accommodated due to the space limitation for permanent magnet assembly. In this study, a new approach to coat the inner surface of small-bore tubes with the inside diameter of one inch was developed. Instead of using permanent magnets for magnetron operation, an external electro-magnet assembly was adopted around the tube to confine the plasma and to sustain the discharge. The electro-magnet was operated in pulse mode to provide the strong axial magnetic field for the magnetron operation, which was synchronized with the negative high-voltage pulse applied to the water-cooled coaxial sputtering target installed inside the tube. By moving the electro-magnet assembly along the tube's axial direction, the inner surface of the tube could be uniformly coated. The inner-surface coating system in this study used the tube itself as the vacuum chamber. The SS-304 tube's inner diameter was 22 mm and the length was ~1 m. A water-cooled Cu tube (sputtering target) of the outer diameter of 12 mm was installed inside of the SS tube (substrate) at the axial position. The 50 mm-long electro-magnet assembly was fed by a current pulse of 250 A at the frequency and pulse width of 100 Hz and 100 usec, respectively. The calculated axial magnetic field strength at the center was ~0.6 Tesla. The central Cu tube was synchronously driven by a HiPIMS power supply at the same frequency of 100 Hz as the electro-magnet and the applied pulse voltage was -1200 V with a pulse width of 500 usec. At 150 mTorr of Ar pressure, the Cu deposition rate of ~10 nm/min could be obtained. In this talk, a new method to sputter coat the inner surface of small-bore tubes would be presented and discussed, which might have broad industrial and military application areas.

  • PDF

Compton Imaging Simulator를 이용한 다층 구조 컴프턴 카메라 성능평가 예비 연구 (Preliminary Study on Performance Evaluation of a Stacking-structure Compton Camera by Using Compton Imaging Simulator)

  • 이세형;박성호;서희;박진형;김찬형;이주한;이춘식;이재성
    • 한국의학물리학회지:의학물리
    • /
    • 제20권2호
    • /
    • pp.51-61
    • /
    • 2009
  • 컴프턴 카메라는 컴프턴 산란현상의 기하학적 해석을 통해 감마선원의 3차원적 위치분포를 고정된 위치에서 찾아내는 신개념의 감마선 영상장치이다. 기존의 감마선 영상장치에서는 필수적으로 사용되는 기계적 집속기를 사용하지 않기 때문에 높은 영상 감도를 제공할 수 있으며, 다중 추적자 기능을 제공한다는 장점이 있어 차세대 감마선 영상장치로서 주목을 받고 있다. 본 연구에서는 Geant4 몬테칼로 전산모사 툴키트를 이용하여 사용자 친화형의 컴프턴 카메라 시뮬레이터를 개발하였다. 시뮬레이터의 정확성을 검증하기 위하여 한양대학교에서 개발 중인 이중 산란형 컴프턴 카메라의 실험 결과와 비교하였다. 영상 해상도의 경우 선원의 에너지가 높아짐에 따라 해상도가 향상되는 동일한 경향을 보였으나, 시뮬레이터 결과에서 약 1 mm 정도 우수하게 평가되었다. 영상 감도의 경우 실험에서 2~3배 정도 높게 평가되었다. 이러한 결과들은 우연 동시반응에 기인한 것으로, 실험에서 획득한 유효반응들은 전산모사와는 달리 우연한 동시계수에의한 데이터가 상당수 포함되어 있기 때문에 영상 해상도는 상대적으로 저조하고, 영상 감도는 높게 나타난 것으로 판단된다. 개발된 시뮬레이터를 이용하여 새로운 구조의 컴프턴 카메라에 대한 성능을 평가하였다. 단일 산란형 컴프턴 카메라의 경우 산란부를 다층 구조로 개발할 때 4대의 산란부 검출기를 사용하는 것이 최상의 성능을 보이는 것으로 평가되었고, 그 이상 사용할 경우 성능이 오히려 저하됨을 확인하였다.

  • PDF

3차원 전신 정위 방사선 치료 장치의 개발 (Development of the Whole Body 3-Dimensional Topographic Radiotherapy System)

  • 정원균;이병용;최은경;김종훈;안승도;이석;민철기;박참복;장혜숙
    • 한국의학물리학회지:의학물리
    • /
    • 제10권2호
    • /
    • pp.63-71
    • /
    • 1999
  • 입체조형 치료와 전신 방사선 수술에의 이용을 목적으로 3차원 전신 정위 방사선 치료 장치를 개발하였다. Couch 위에 놓을 수 있는 전신 정위 치료판을 제작하여 방사선 비투과성 카테타 선을 이용하여 치료판 위에 좌표계를 설치하고, MeV-Green(전성 물산, 한국)으로 고정틀을 만들어 환자 자세를 고정시키고, 플라스틱 봉과 봉 지지판을 이용하여 고정틀을 고정하였다. 이러한 설계, 제작으로 입체 조형 치료 등에서 갠트리 회전에 의한 기하학적 제약을 최소화하고 방사선 조사 투과율 이 특정한 방향에서 영향을 받는 문제점을 해소하였다. CT 영상을 통해 치료 표적의 위치를 파악하고 치료판 기준점에 대하여 좌표화하여 모의 치료시와 방사선 치료시의 환자 자세 변화 오차를 줄였다. 3대의 CCTV 카메라를 사용하여 환자 자세 변화를 감지, 수정함으로써 체표변의 외곽선으로 부터 setup 오차를 최소화 할 수 있었다. 치료 효용성을 높이기 위해 이러한 과정을 모니터를 보면서 실시간으로 처리 할 수 있도록 하였고, IDL(Interactive Data Language, RSI, U.S.A.)을 사용하여 image subtraction 방식으로 환자 자세 변화를 가시화하여 오차를 줄이도록 하였다. 내부 장기 움직임에 따른 표적의 움직임을 추적할 목적으로 rotating X-ray 장치를 제작하였다. Landmark 나사를 표적주위 뼈나 표적중심에 삽입하여 이 rotating X-ray 장치를 이용해서 anterior, lateral 두 방향에서 얻은 영상 정보로부터 marker 에 대한 표적의 위치 변화를 가시화 하여 내부 표적의 움직임에 따른 setup 오차를 줄였다. CT 모의치료를 할 수 있도록 IDL 을 이용하여 PC용 모의치료 프로그램을 GUI 환경에서 구현하였고 이 프로그램을 통해서 치료 계획을 위해 CT 에서 수집된 영상정 보를 이용하여 표적을 포함한 장기들의 그래픽 처리, 편집, 전송 등의 작업을 수행하도록 하였다.

  • PDF