• Title/Summary/Keyword: geometrical factor

Search Result 237, Processing Time 0.024 seconds

Quantitative Comparison of Activity Calculation Methods for the Selection of Most Reliable Radionuclide Inventory Estimation

  • Hwang, Ki-Ha;Lee, Sang-Chul;Lee, Kun-Jai;Jeong, Chan-Woo;Ahn, Sang-Myeon;Kim, Tae-Wook;Kim, Kyoung-Doek;Herr, Y.H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2003.11a
    • /
    • pp.322-327
    • /
    • 2003
  • It is important to know the accurate radionuclide inventory of radioactive waste for the reliable management. However, estimation of radionuclide concentrations in drummed radioactive waste is difficult and unreliable because of difficulties of direct detection, high cost, and radiation exposure of sampling personnel. In order to overcome these difficulties, scaling factors (SFs) have been used to assess the activities of radionuclides that could not be directly analyzed. A radionuclide assay system has been operated at KORI site since 1996 and consolidated scaling factor method has played a dominant role in determination of radionuclides concentrations. However, some problems are still remained such as uncertainty of estimated scaling factor values, inaccuracy of analyzed sample values, and disparity between the actual and ideal correlation pairs and the others. Therefore, it needs to improve the accuracy of scaling factor values. The scope of this paper is focused on the improvement of accuracy and representativeness of calculated scaling factor values based on statistical techniques. For the selection of reliable activity determination method, the accuracy of estimated SF values for each activity determination method is compared. From the comparison of each activity determination methods, it is recommended that SF determination method should be changed from the arithmetic mean to the geometrical mean for more reliable estimation of radionuclide activity. Arithmetic mean method and geometric mean method are compared based on the data set in KORI system.

  • PDF

PHYSICAL PROPERTIES OF FRESH RED PEPPER

  • W. J. La;D. B. Song;Lee, S. K.;Lee, T. K.
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11c
    • /
    • pp.578-585
    • /
    • 2000
  • Geometrical characteristics of fresh red pepper(Capsicum annuum L.) were measured and indexed to define some important geometrical characteristics, and malformation of body and fruit stalk which are necessary for the design of the equipments for cutting, spreading and alignment of red pepper in developing a fruit stalk remover of fresh red pepper. The effects of bending of body and fruit stalk on the equipments of cutting, spreading and alignment were studied. The maximum lengths of some parts of fresh red pepper were found to be 180 mm, 125 mm, 144 mm, 67 mm and 76 mm for the body, the bent part of body, the fruit stalk, the bent part and the straight part of fruit stalk, respectively. The fresh red pepper with bending indices more than 0.4 and 0.3 for the body and the fruit stalk, respectively, was defined to be malformed based on the result of cutting rate using cutting unit; while the other ones to be normal in shape. Based on this, among the total fresh red peppers tested, 47%, 40% and 20% were found malformed for the body, the fruit stalk, and for both of the body and the fruit stalk. Malformed red peppers were poorer in spreading and alignment than normal ones, and the processed quantity was decreased with increased feed rate. The required time for the malformed peppers to pass on the alignment plate inclined at 30 increased rapidly at 8.3 Hz with increased feed rate. For the fresh red peppers with average moisture content of 85%,w.b., the maximum tensile strength between fruit stalk and body was 88.1 N; the maximum cutting resistances were 92.1 N and 94.9 N for the fruit stalk-calyx joint and body, respectively. Average coefficients of static friction were 0.99, 0.62, 0.59 and OJ, respectively, for the surfaces of rubber, galvanized iron, acryl and plywood.

  • PDF

A Study on the Characteristics of expression and formal principle of universalism it Architectural Composition (건축형태구성에 있어 보편성 원리와 표현특성에 관한 연구)

  • 이승우
    • Korean Institute of Interior Design Journal
    • /
    • no.16
    • /
    • pp.175-181
    • /
    • 1998
  • The purpose of this study was to analyze the characteristics of expression and formal principle of universalism in Architectural Composition. Theorical category is to find universal system with the connection between idea of society and tradition in compositional frame the results were as follows : First it is the pursuit of divine. Through Middle Age and Renaissance universalism of principles in Architectural Composition is appeared a numerical order and human proportion with applying of cosmology. Second it is the pursuit of schema. With the simplicity of formal image it represented to the geometrical form for its clearness. Third it is the pursuit of typology. As to play a role of decisive factor in formal construction type represented the model with abstraction of shape.

  • PDF

Nonlinear analysis based optimal design of double-layer grids using enhanced colliding bodies optimization method

  • Kaveh, A.;Moradveisi, M.
    • Structural Engineering and Mechanics
    • /
    • v.58 no.3
    • /
    • pp.555-576
    • /
    • 2016
  • In this paper an efficient approach is introduced for design and analysis of double-layer grids including both geometrical and material nonlinearities, while the results are compared with those considering material nonlinearity. Optimum design procedure based on Enhanced Colliding Bodies Optimization method (ECBO) is applied to optimal design of two commonly used configurations of double-layer grids. Two ranges of spans as small and big sizes with certain bays of equal length in two directions are considered for each type of square grids. ECBO algorithm obtains minimum weight grid through appropriate selection of tube sections available in AISC Load and Resistance Factor Design (LRFD). Strength constraints of AISC-LRFD specifications and displacement constraints are imposed on these grids.

Theoretical Approach for Physicochemical Factors Affecting Human Toxicity of Dioxins (다이옥신의 인체 독성에 영향을 미치는 물리화학적 인자에 대한 이론적 접근)

  • 황인철;박형석
    • Environmental Analysis Health and Toxicology
    • /
    • v.14 no.1_2
    • /
    • pp.65-73
    • /
    • 1999
  • Dioxins refer to a family of chemicals comprising 75 polychlorinated dibenzo-p-dioxin (PCDD) and 135 polychlorinated dibenzo-p-furan (PCDF) congeners, which may cause skin disorder, human immune system disruption, birth defects, severe hormonal imbalance, and cancer. The effects of exposure of dioxin-like compounds such as PCBs are mediated by binding to the aryl hydrocarbon receptor (AHR), which is a ligand-activated transcription factor. To grasp physicochemical factors affecting human toxicity of dioxins, six geometrical and topological indices, eleven thermodynamic variables, and quantum mechanical descriptors including ESP (electrostatic potential) were analyzed using QSAR and semi-empirical AM1 method. Planar dioxins with high lipophilicity and large surface tension show the probability that negative electrostatic potential in the lateral oxygen may make hydrogen bonding with DNA bases to be a carcinogen.

  • PDF

Simplified Modeling of Deflagration in Vessels

  • Kim, Joon-Hyun;Kim, Joo-Hyun
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.8
    • /
    • pp.1338-1348
    • /
    • 2004
  • A simplified method that models the deflagration process occurring in closed or vented vessels is described. When combustion occurs within the spherical or cylindrical vessels, the flame moves spherically or segmentally to the vessel periphery. The volume and area of each element along the propagating flame front are calculated by using simple geometrical rules. For instabilities and turbulence resulting in enhanced burning rates, a simple analysis results in reasonable agreement with the experimental pressure transients when two burning rates (a laminar burning rate prior to the onset of instability and an enhanced burning rate) were used. Pressure reduction caused by a vent opening at predetermined pressure was modeled. Parameters examined in the modeling include ignition location, mixture concentration, vented area, and vent opening pressure. It was found that venting was effective in reducing the peak pressure experienced in vessels. The model can be expected to estimate reasonable peak pressures and flame front distances by modeling the enhanced burning rates, that is, turbulent enhancement factor.

Study of Shear Fracture System of Janghung Area by Landslide Location Analysis (산사태 발생 자료 분석에 의한 장흥지역의 전단 단열계 연구)

  • 이사로;최위찬;민경덕
    • Economic and Environmental Geology
    • /
    • v.33 no.6
    • /
    • pp.547-556
    • /
    • 2000
  • The purpose of this study is to analyze shear fracture system using landslide location occurred 1998 at Janghung area. For the geological implication, foliation was surveyed and analyzed, and location of landslide, geological structure and topography were constructed into spatial database using GIS. With the constructed spatial database, shear fracture system was assessed by the relation analysis between strike and dip of the foliation and aspect and slope of the topography. We compared strike and dip of foliation and aspect and slope of topography and recognized the typical fracture pattern, strike and dip of joint, that coincided with shear fracture system. The result tells us that foliation of gneiss has geometrical relation to joint or fault that leading landslide. GIS was used to analyze vast data efficiently and the result can be used to assess the landslide susceptibility as important factor.

  • PDF

Improvement of Geometrical Structure of Cr-Gate Electrode in Mo-tip Field Emitter Array (몰리브덴 팁 전계 방출 소자에 있어서 크롬 게이트 전극 구조의 개선)

  • Ju, Byeong-Kwon;Kim, Hoon;Seo, Sang-Won;Lee, Yun-Hi
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.50 no.10
    • /
    • pp.532-535
    • /
    • 2001
  • The sputtering condition of Cr thin film was established in order to get Cr gate electrode having a vertical wall structure for Mo-tip FEA. In case of Mo-tip FEA which had a vertically-etched Cr gate electrode, the field enhancement factor, was relatively increased and so the field emission performance in terms of turn-on voltage, emission current and trans-conductance could be improved when compared with the devices having a tapered gate wall.

  • PDF

A study on optimum parameter Fatigue Design for Gas Welded joint of STS301L (철도차량 가스용접 이음재의 피로설계를 위한 최적 파라메타 연구)

  • Baek, Seung-Yeb;Bae, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1679-1683
    • /
    • 2007
  • Stainless steel sheets are widely used as the structure material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. For fatigue design of gas welded joints such as fillet and plug and ring type joint, it is important to obtain optimum design parameter information on gas welded joints. In this paper, analysis approach for fatigue test using experimental design are evaluated optimum factor in gas welded joint type and geometrical parameters of materials. Using these results, that factors applied to fundamental information for fatigue design.

  • PDF

A Study on the Compressive Characteristics of Sandwich Sheet with Pyramid Core in the Thickness Direction (피라미드 코어를 가진 샌드위치 판재의 두께 방향 압축 특성에 대한 연구)

  • Cho, K.C.;Kim, J.Y.;Kim, J.H.;Chung, W.J.
    • Transactions of Materials Processing
    • /
    • v.15 no.9 s.90
    • /
    • pp.635-640
    • /
    • 2006
  • Sandwich sheet with inner structure is expected to find many applications because of high stiffness to mass ratio. However, low resistance to the compressive pressure in the thickness direction is a dominating factor in the formability of sandwich sheet. In this study, sandwich sheet with pyramid type core is considered. For the compressive characteristics in the thickness direction, experiments and finite element simulations are carried out. In the experiment, deformation behavior is observed and discussed as the compression proceeds. It is shown that a corresponding finite element simulation can give a reasonable agreement with experiment in terms of maximum pressure. However, simulation shows some discrepancy from the experiment in terms of compressive pressure-displacement characteristics. The reasons for this discrepancy are studied in the geometrical imperfectness of sandwich sheet. It is also observed that most of deformation is dominated by buckling mode of pyramid legs.