• 제목/요약/키워드: geometrical distribution

검색결과 334건 처리시간 0.025초

An effective load increment method for multi modal adaptive pushover analysis of buildings

  • Turker, K.;Irtem, E.
    • Structural Engineering and Mechanics
    • /
    • 제25권1호
    • /
    • pp.53-73
    • /
    • 2007
  • In this study, an effective load increment method for multi modal adaptive non-linear static (pushover) analysis (NSA) for building type structures is presented. In the method, lumped plastisicity approach is adopted and geometrical non-linearties (second-order effects) are included. Non-linear yield conditions of column elements and geometrical non-linearity effects between successive plastic sections are linearized. Thus, load increment needed for formation of plastic sections can be determined directly (without applying iteration or step-by-step techniques) by using linearized yield conditions. After formation of each plastic section, the higher mode effects are considered by utilizing the essentials of traditional response spectrum analysis at linearized regions between plastic sections. Changing dynamic properties due to plastification in the system are used on the calculation of modal lateral loads. Thus, the effects of stiffness changes and local mechanism at the system on lateral load distribution are included. By using the proposed method, solution can be obtained effectively for multi-mode whereby the properties change due to plastifications in the system. In the study, a new procedure for determination of modal lateral loads is also proposed. In order to evaluate the proposed method, a 20 story RC frame building is analyzed and compared with Non-linear Dynamic Analysis (NDA) results and FEMA 356 Non-linear Static Analysis (NSA) procedures using fixed loads distributions (first mode, SRSS and uniform distribution) in terms of different parameters. Second-order effects on response quantities and periods are also investigated. When the NDA results are taken as reference, it is seen that proposed method yield generally better results than all FEMA 356 procedures for all investigated response quantities.

Optimal load distribution for two cooperating robot arms using force ellipsoid

  • Choi, Myoung-Hwan;Cho, Hye-Kyung;Lee, Bum-Hee;Ko, Myoung-Sam
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1991년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 22-24 Oct. 1991
    • /
    • pp.1790-1795
    • /
    • 1991
  • The optimal load distribution for two cooperating robots is studied in this paper, and a new solution approach utilizing force ellipsoid is proposed. The load distribution problem is formulated as a nonlinear optimization problem with a quadratic cost function. The limit on instantaneous power is considered in the problem formulation as the joint torque constraints. The optimal solution minimizing energy consumption is obtained using the concept of force ellipsoid and the nonlinear optimization theory. The force ellipsoid provides a useful geometrical insight into the load distribution problem. Despite the presence of the joint torque constraints, the optimal solution is obtained almost as a closed form, in which the joint torques are given in terms of a single scalar parameter that can be obtained numerically by solving a scalar equation.

  • PDF

아마츄어 및 레일의 구조 변화에 따른 전류 밀도, 인덕턴스 경도 및 접촉력의 영향 연구 (A Study on Effect on Current Density Distribution, Inductance Gradient, and Contact Force by Variation of Armature and Rail Structure)

  • 김복기
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제50권2호
    • /
    • pp.59-64
    • /
    • 2001
  • The distribution of current in the conductors influenced by the armature geometry and velocity is an important parameter for determining performance of an electromagnetic launcher(EML). the electric current in the early launching stage tends to flow on the outer surfaces of the conductors, resulting in very high local electric current density. However, the tendency for current to concentrate on the surface is driven by the velocity skin effect later in launching stage. The high current density produces high local heating and, consequently, increases armature wear which causes several defects on EML system. This paper investigates the effects of rail/armature geometry on current density distribution, launcher inductance gradient (L'), and contact force. Three geometrical parameters are used here to characterize the railgun system. These are the ratio of contact length to root length, relative position of contact leading edge to root trailing edge, and the ratio of rail overhang to the rail height. The distribution of current density, L', contact force between various configurations of the armature and the rail are analyzed and compared by using the EMAP3D program.

  • PDF

Aerodynamic assessment of airfoils for use in small wind turbines

  • Okita, Willian M.;Ismail, Kamal A.R.
    • Advances in Energy Research
    • /
    • 제6권1호
    • /
    • pp.35-54
    • /
    • 2019
  • A successful blade design must satisfy some criterions which might be in conflict with maximizing annual energy yield for a specified wind speed distribution. These criterions include maximizing power output, more resistance to fatigue loads, reduction of tip deflection, avoid resonance and minimize weight and cost. These criterions can be satisfied by modifying the geometrical parameters of the blade. This study is dedicated to the aerodynamic assessment of a 20 kW horizontal axis wind turbine operating with two possible airfoils; that is $G{\ddot{o}}ttingen$ 413 and NACA 2415 airfoils (the Gottingen airfoil never been used in wind turbines). For this study parameters such as chord (constant, tapered and elliptic), twist angle (constant and linear) are varied and applied to the two airfoils independently in order to determine the most adequate blade configuration that produce the highest annual energy output. A home built numerical code based on the Blade Element Momentum (BEM) method with both Prandtl tip loss correction and Glauert correction, X-Foil and Weibull distribution is developed in Matlab and validated against available numerical and experimental data. The results of the assessment showed that the NACA 2415 airfoil section with elliptic chord and constant twist angle distributions produced the highest annual energy production.

접촉 압력 분포를 이용한 로봇 의료 촉진 (A Robotic Medical Palpation using Contact Pressure Distribution)

  • 김형균;최승문;정완균
    • 로봇학회논문지
    • /
    • 제12권3호
    • /
    • pp.322-331
    • /
    • 2017
  • In this paper we present a novel robotic palpation method for the lump shape estimation using contact pressure distribution. Many previous researches about the robotic palpation have used a stiffness map, which is not suitable to obtain geometrical information of a lump. As a result, they require a large data set and long palpation time to estimate the lump shape. Instead of using the stiffness map, the proposed palpation method uses the difference between the normal force direction and the surface normal to detect the lump boundary and estimate its normal. The palpation trajectory is generated by the normal of the lump boundary to track the lump boundary in real-time. The proposed approach requires small data set and short palpation time for the lump shape estimation since the shape can be directly estimated from the optimally generated palpation trajectory. An experiment result shows that our method can find the lump shape accurately in real-time with small data and short time.

어파인 변형과 교차참조점을 이용한 강인한 워터마킹 기법 (A Robust Watermarking Technique Using Affine Transform and Cross-Reference Points)

  • 이항찬
    • 전기학회논문지
    • /
    • 제56권3호
    • /
    • pp.615-622
    • /
    • 2007
  • In general, Harris detector is commonly used for finding salient points in watermarking systems using feature points. Harris detector is a kind of combined comer and edge detector which is based on neighboring image data distribution, therefore it has some limitation to find accurate salient points after watermark embedding or any kinds of digital attacks. In this paper, we have used cross reference points which use not data distribution but geometrical structure of a normalized image in order to avoid pointing error caused by the distortion of image data. After normalization, we find cross reference points and take inverse normalization of these points. Next, we construct a group of triangles using tessellation with inversely normalized cross reference points. The watermarks are affine transformed and transformed-watermarks are embedded into not normalized image but original one. Only locations of watermarks are determined on the normalized image. Therefore, we can reduce data loss of watermark which is caused by inverse normalization. As a result, we can detect watermarks with high correlation after several digital attacks.

웨이브렛 변환과 신경망 학습을 이용한 고저항 지락사고 검출에 관한 연구 (A Syudy on the Detection of High Impedance Faults using Wavelet Transforms and Neural Network)

  • 홍대승;배영철;전상영;임화영
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2000년도 추계종합학술대회
    • /
    • pp.459-462
    • /
    • 2000
  • The analysis of distribution line faults is essential to the proper protection of power system. A high impedance fault(HIF) dose not make enough current to cause conventional protective device operating. so it is well hon that undesirable operating conditions and certain types of faults on electric distribution feeders cannot be detected by using conventional protection system. In this paper, we prove that the nature of the high impedance faults is indeed a deterministic chaos, not a random motion Algorithms for estimating Lyapunov spectrum and the largest Lyapunov exponent are applied to various fault currents detections in order to evaluate the orbital instability peculiar to deterministic chaos dynamically, and fractal dimensions of fault currents which represent geometrical self-similarity are calculated. Wavelet transform analysis is applied the time-scale information to fault signal. Time-scale representation of high impedance faults can detect easily and localize correctly the fault waveform.

  • PDF

STS301L 필렛 용접이음재의 피로설계에 관한 연구 (A Study on Fatigue Design for Fillet Welded faint of STS301L)

  • 백승엽;배동호
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2006년 추계학술발표대회 개요집
    • /
    • pp.29-31
    • /
    • 2006
  • Stainless steel sheets are widely used as the structural material for the railroad cars and the commercial vehicles. These kinds structures used stainless steel sheets are commonly fabricated by using the gas welding. For fatigue design of gas welded joints such as fillet and plug type joint, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of gas welded joints. And also, the influence of the geometrical parameters of gas welded joints on stress distribution and fatigue strength must be evaluated. the ${\Delta}P-N_f$ curves were obtained by fatigue tests. Using these results, ${\Delta}P-N_f$ curves were rearranged in the ${\sigma}-N_f$ relation with the maximum stress at the edge of fillet welded joint.

  • PDF

GMA 용접공정에서 적외선 온도 센서를 이용한 용융지 크기 예측 (Weld pool size estimation of GMAW using IR temperature sensor)

  • 김병만;김영선;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.1404-1407
    • /
    • 1996
  • A quality monitoring system in butt welding process is proposed to estimate weld pool sizes. The geometrical parameters of the weld pool such as the top bead width and the penetration depth plus half back width are utilized to prove the integrity of the weld quality. The monitoring variables used are the surface temperatures measured at three points on the top surface of the weldment. The temperature profile is assumed that it has a gaussian distribution in vertical direction of torch movement and verify this assumption through temperature analysis. A neural network estimator is designed to estimate weld pool size from temperature informations. The experimental results show that the proposed neural network estimator which used gaussian distribution as temperature information can estimate the weld pool sizes accurately than used three point temperatures as temperature information. Considering the change of gap size in butt welding, the experiment were performed on various gap size.

  • PDF

립실의 접촉력 및 온도분포 해석에 관한 연구 (A Study on the Contact Force and Temperature Distribution of Lip Seals)

  • 김청균;전인기;김종억
    • 대한기계학회논문집
    • /
    • 제18권6호
    • /
    • pp.1559-1566
    • /
    • 1994
  • Using the finite element method, the contact force, contact band width and temperature distribution of lip seals analyzed for the interference including some nonlinearities such as material nonlinearity, geometrical nonlinearity and nonlinear contact boundary condition. The calculated results showed that the contact stress concentrated on the contact zone between the garter spring and the rubber toward the flex side, the contact edge of lip seals. The high contact forces due to the increased interference separate the sealing gap between the lip edge and the rotating shaft. This may lead to leak the sealed oil.