• Title/Summary/Keyword: geometrical distortion

Search Result 84, Processing Time 0.033 seconds

An Iterative Spot Matching for 2-Dimensional Protein Separation Images (반복 점진적 방법에 의한 2차원 단백질 분리 영상의 반점 정합)

  • Kim, Jung-Ja;Hoang, Minh T.;Kim, Dong-Wook;Kim, Nam-Gyun;Won, Yong-Gwan
    • Journal of Biomedical Engineering Research
    • /
    • v.28 no.5
    • /
    • pp.601-608
    • /
    • 2007
  • 2 Dimensional Gel Electrophoresis(2DGE) is an essentialmethodology for analysis on the expression of various proteins. For example, information for the location, mass, expression, size and shape of the proteins obtained by 2DGE can be used for diagnosis, prognosis and biological progress by comparison of patients with the normal persons. Protein spot matching for this purpose is comparative analysis of protein expression pattern for the 2DGE images generated under different conditions. However, visual analysis of protein spots which are more than several hundreds included in a 2DGE image requires long time and heavy effort. Furthermore, geometrical distortion makes the spot matching for the same protein harder. In this paper, an iterative algorithm is introduced for more efficient spot matching. Proposed method is first performing global matching step, which reduces the geometrical difference between the landmarks and the spot to be matched. Thus, movement for a spot is defined by a weighted sum of the movement of the landmark spots. Weight for the summation is defined by the inverse of the distance from the spots to the landmarks. This movement is iteratively performed until the total sum of the difference between the corresponding landmarks is larger than a pre-selected value. Due to local distortion generally occurred in 2DGE images, there are many regions in whichmany spot pairs are miss-matched. In the second stage, the same spot matching algorithm is applied to such local regions with the additional landmarks for those regions. In other words, the same method is applied with the expanded landmark set to which additional landmarks are added. Our proposed algorithm for spot matching empirically proved reliable analysis of protein separation image by producing higher accuracy.

The Research for Scannogram (Scannogram, Whole Spine image 획득에 관한 연구)

  • Lee, Gwnag-Jae;Go, Shin-Guan;Kim, Uk-Dong;Kim, Shi-Don;Kim, Hyung-Seop
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.10 no.1
    • /
    • pp.35-40
    • /
    • 2008
  • I.objective The composition method with acquiring 2${\sim}$5 image not only lack perfection in compensating the geometrical distortion but could also cause inaccurate connection problem of compensating the geometrical distortion but could also cause inaccurate connection problem of continuing bone structure due to the enlargement ratio difference of ruller and bone, density difference in image composition process. This paper studies those mentioned problems through the experiments. II. Object and method Experiment 1 After attaching 3 step wedge(Pb) on detector and 2 ruller on upper, lower part of the step wedge, we have exposed them to create density difference between 1st image and 2nd image, then examined if there were any errors. Experiment 2 1st 100cm ruller was attached on the center of detector, and by escalating the distance between 2nd 100cm ruller and detector 5cm, 10cm, 15cm respectively, we investigated if there any errors caused by enlargement ratio. Experiment 3 The ruller was placed on detector, a joint photographing was performed through spot photographing after fully operating the electric field photographing to include hip joint ${\sim}$ ankle joint part and we have compared the values from two methods. III. Result : A horizontal axis error was caused when photopraphing is not poerated in equal density since the image shifted horizontally in accordance with the difference of Pb step wedge 1 due to the density difference, as the result of Epperiment 1.

  • PDF

Optimal Localization through DSA Distortion Correction for SRS

  • Shin, Dong-Hoon;Suh, Tae-Suk;Huh, Soon-Nyung;Son, Byung-Chul;Lee, Hyung-Koo;Choe, Bo-Young;Shinn, Kyung-Sub
    • Progress in Medical Physics
    • /
    • v.11 no.1
    • /
    • pp.39-47
    • /
    • 2000
  • In Stereotactic Radiosurgery (SRS), there are three imaging methods of target localization, such as digital subtraction Angiography (DSA), computed tomography (CT), magnetic resonance imaging (MRI). Especially, DSA and MR images have a distortion effect generated by each modality. In this research, image properties of DSA were studied. A first essential condition in SRS is an accurate information of target locations, since high dose used to treat a patient may give a complication on critical organ and normal tissue. Hut previous localization program did not consider distortion effect which was caused by image intensifier (II) of DSA. A neurosurgeon could not have an accurate information of target locations to operate a patient. In this research, through distortion correction, we tried to calculate accurate target locations. We made a grid phantom to correct distortion, and a target phantom to evaluate localization algorithm. The grid phantom was set on the front of II, and DSA images were obtained. Distortion correction methods consist of two parts: 1. Bilinear transform for geometrical correction and bilinear interpolation for gray level correction. 2. Automatic detection method for calculating locations of grid crosses, fiducial markers, and target balls. Distortion was corrected by applying bilinear transform and bilinear interpolation to anterior-posterior and left-right image, and locations of target and fiducial markers were calculated by the program developed in this study. Localization errors were estimated by comparing target locations calculated in DSA images with absolute locations of target phantom. In the result, the error in average with and without distortion correction is $\pm$0.34 mm and $\pm$0.41 mm respectively. In conclusion, it could be verified that our localization algorithm has an improved accuracy and acceptability to patient treatment.

  • PDF

The usability of the image according to the frequency encoding gradient direction conversion in fixation using the non magnetic metal screw (비 자성 금속 screw를 이용한 고정술에서 주파수 부호화 경사 방향 변환에 따른 영상의 유용성)

  • Cho, Jae-Hwan;Lee, Hae-Kag;Park, Cheol-So
    • Journal of Digital Contents Society
    • /
    • v.12 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Because of causing the geometrical transformation of the magnetic field, the patient implementing the fixation using the nonmagnetic metal screw causes the magnetic susceptibility artifact at an image. Thus, in this research, the distortion measure of the image according to the frequency oblique direction conversion tried to be compared in the magnetic susceptibility artifact occurence. First, the itself phantom inserting the nonmagnetic metal screw of the titanium component was made and the region of interest was set up and the frequency oblique direction the anterior - back side was converted to the right-to-left direction in the axial image and a right-to-left was converted to the upper side - bottom side in the coronal plane and the upper - bottom side was converted to the anterior - back side in the sagittal plane and the distortion measure of the region of interest was compared, it observed. In a result, when converting the frequency oblique direction, the distortion difference of the region of interest could be confirmed and it is considered to enhance the diagnostics efficiency changing the oblique direction appropriately.

Image Data Loss Minimized Geometric Correction for Asymmetric Distortion Fish-eye Lens (비대칭 왜곡 어안렌즈를 위한 영상 손실 최소화 왜곡 보정 기법)

  • Cho, Young-Ju;Kim, Sung-Hee;Park, Ji-Young;Son, Jin-Woo;Lee, Joong-Ryoul;Kim, Myoung-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.1
    • /
    • pp.23-31
    • /
    • 2010
  • Due to the fact that fisheye lens can provide super wide angles with the minimum number of cameras, field-of-view over 180 degrees, many vehicles are attempting to mount the camera system. Not only use the camera as a viewing system, but also as a camera sensor, camera calibration should be preceded, and geometrical correction on the radial distortion is needed to provide the images for the driver's assistance. In this thesis, we introduce a geometric correction technique to minimize the loss of the image data from a vehicle fish-eye lens having a field of view over $180^{\circ}$, and a asymmetric distortion. Geometric correction is a process in which a camera model with a distortion model is established, and then a corrected view is generated after camera parameters are calculated through a calibration process. First, the FOV model to imitate a asymmetric distortion configuration is used as the distortion model. Then, we need to unify the axis ratio because a horizontal view of the vehicle fish-eye lens is asymmetrically wide for the driver, and estimate the parameters by applying a non-linear optimization algorithm. Finally, we create a corrected view by a backward mapping, and provide a function to optimize the ratio for the horizontal and vertical axes. This minimizes image data loss and improves the visual perception when the input image is undistorted through a perspective projection.

Reconstruction of Wide FOV Image from Hyperbolic Cylinder Mirror Camera (실린더형 쌍곡면 반사체 카메라 광각영상 복원)

  • Kim, Soon-Cheol;Yi, Soo-Yeong
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.146-153
    • /
    • 2015
  • In order to contain as much information as possible in a single image, a wide FOV(Field-Of-View) imaging system is required. The catadioptric imaging system with hyperbolic cylinder mirror can acquire over 180 degree horizontal FOV realtime panorama image by using a conventional camera. Because the hyperbolic cylinder mirror has a curved surface in horizontal axis, the original image acquired from the imaging system has the geometrical distortion, which requires the image processing algorithm for reconstruction. In this paper, the image reconstruction algorithms for two cases are studied: (1) to obtain an image with uniform angular resolution and (2) to obtain horizontally rectilinear image. The image acquisition model of the hyperbolic cylinder mirror imaging system is analyzed by the geometrical optics and the image reconstruction algorithms are proposed based on the image acquisition model. To show the validity of the proposed algorithms, experiments are carried out and presented in this paper. The experimental results show that the reconstructed images have a uniform angular resolution and a rectilinear form in horizontal axis, which are natural to human.

A 3D Watermarking on STL using Vertex domain (버텍스 영역을 이용한 STL에서의 3차원 디지털 워터마킹)

  • 김기석;천인국
    • Proceedings of the Korea Multimedia Society Conference
    • /
    • 2002.05d
    • /
    • pp.901-906
    • /
    • 2002
  • This paper is a research about method, that is used in Rapid Prototyping system, that inserts and extracts watermark in STL(standard transform language) that has a 3D geometrical model. The proposed algorithm inserts watermark in the vertex domain of STL facet without the distortion of 3D model. If we make use of a established algorithm for watermarking of STL, a watermark inserted to 3D model can be removed by simple attack that change order of facet. The proposed algorithm has robustness about these attack. Experiment results verify that the proposed algorithm, to encode and decode watermark in STL 3D geometrical model, doesn't distort a 3D model at all. And it shows that the proposed algorithm is available.

  • PDF

Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre

  • Katariya, Pankaj V.;Panda, Subrata K.;Hirwani, Chetan K.;Mehar, Kulmani;Thakare, Omprakash
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.595-605
    • /
    • 2017
  • The present article reported the thermal buckling strength of the sandwich shell panel structure and subsequent improvement of the same by embedding shape memory alloy (SMA) fibre via a general higher-order mathematical model in conjunction with finite element method. The geometrical distortion of the panel structure due to the temperature is included using Green-Lagrange strain-displacement relations. In addition, the material nonlinearity of SMA fibre due to the elevated thermal environment also incorporated in the current analysis through the marching technique. The final form of the equilibrium equation is obtained by minimising the total potential energy functional and solved computationally with the help of an original MATLAB code. The convergence and the accuracy of the developed model are demonstrated by solving similar kind of published numerical examples including the necessary input parameter. After the necessary establishment of the newly developed numerical solution, the model is extended further to examine the effect of the different structural parameters (side-to-thickness ratios, curvature ratios, core-to-face thickness ratios, volume fractions of SMA fibre and end conditions) on the buckling strength of the SMA embedded sandwich composite shell panel including the different geometrical configurations.

The Alcock-Paczynski effect via clustering shells

  • Sabiu, Cristiano G.;Lee, Seokcheon;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.38 no.2
    • /
    • pp.58.2-58.2
    • /
    • 2013
  • Both peculiar velocities and errors in the assumed redshift-distance relation ("Alcock-Paczynski effect") generate correlations between clustering amplitude and orientation with respect to the line-of-sight. In this talk we propose a novel technique to extract the Alcock-Paczynski, geometric, distortion information from the anisotropic clustering of galaxies in 3-dimensional redshift space while minimizing non-linear clustering and peculiar velocity effects. We capitalize on the recent, large dataset from the Sloan Digital Sky Survey III (SDSS-III), which provides a large comoving sample of the universe out to high redshift. We focus our analysis on the Baryon Oscillation Spectroscopic Survey (BOSS) constant mass (CMASS) sample of 549,005 bright galaxies in the redshift range 0.43

  • PDF

LPM-Based Digital Watermarking for Forgery Protection in Printed Materials (인쇄물의 위조 방지를 위한 LPM기반의 디지털 워터마킹)

  • Bae Jong-Wook;Lee Sin-Joo;Jung Sung-Hwan
    • Journal of Korea Multimedia Society
    • /
    • v.8 no.11
    • /
    • pp.1510-1519
    • /
    • 2005
  • We proposed a digital watermarking method that it is possible to identify the copyright because the watermark is detected in the first print-scan and to protect a forgery because the watermark is not detected in the second print-scan. The proposed algorithm uses LPM and DFT transform for the robustness to the distortion of pixel value and geometrical distortion. This methods could improve watermark detection performance and image quality by selecting maximum sampling radius in LPM transform. After analyzing the characteristics of print-scan process, we inserted the watermark in the experimentally selected frequency bands that survives robustly to the first print-scan and is not detected in the second print-scan, using the characteristic of relatively large distortion in high frequency bands of DFT As the experimental result, the original proof is possible because average similarity degree 5.13 is more than the critical value 4.0 in the first print-scan. And the detection of forgery image is also possible because average similarity degree 2.76 is less than the critical value 4.0 in the second print-scan.

  • PDF