• 제목/요약/키워드: geometrical distortion

Search Result 84, Processing Time 0.032 seconds

Watermarking Algorithm that is Adaptive on Geometric Distortion in consequence of Restoration Pattern Matching (복구패턴 정합을 통한 기하학적 왜곡에 적응적인 워터마킹)

  • Jun Young-Min;Ko Il-Ju;Kim Dongho
    • The KIPS Transactions:PartB
    • /
    • v.12B no.3 s.99
    • /
    • pp.283-290
    • /
    • 2005
  • The mismatched allocation of watermarking position due to parallel translation, rotation, and scaling distortion is a problem that requires an answer in watermarking. In this paper, we propose a watermarking method robust enough to hold against geometrical distorting using restoration pattern matching. The proposed method defines restoration pattern, then inserts the pattern to a watermark embedded image for distribution. Geometrical distortion is verified by comparing restoration pattern extracted from distributed image and the original restoration pattern inserted to the image. If geometrical distortion is found, inverse transformation is equally performed to synchronize the watermark insertion and extraction position. To evaluate the performance of the proposed method, experiments in translation, rotation, and scaling attack are performed.

Distortion Correction in Magnetic Resonance Images on the Measurement of Muscle Cross-sectional Area (자기공명영상을 이용한 근육 단면적 측정법의 활용을 위한 영상왜곡보정)

  • Hong, Cheol-Pyo;Lee, Dong-Hoon;Park, Ji-Won;Han, Bong-Soo
    • The Journal of Korean Physical Therapy
    • /
    • v.24 no.2
    • /
    • pp.66-72
    • /
    • 2012
  • Purpose: The purpose of this study is to explore the importance of the image distortion correction in the cross sectional area measurement for the iliopsas muscle, tensor fasciae latae muscle, gluteus maximus muscle and the knee extensor muscles, by using (magnetic resonance imaging) MRI. Methods: This study was performed using an open 0.32T MRI system. To estimate the image distortion, T1 images for an AAPM homogeneity/linearity phantom were acquired, and the region in which the maximum geometric distortion was less than or equal to the pixel size (1.6 mm) of the images, it was defined as the distortion correction-free region. The T2 images for a human subject's pelvis and thigh in normal positions were obtained. Then, after the regions of interest in the pelvis and thigh were moved into the distortion correction-free region, T2 images for the pelvis and thigh were scanned with the same imaging parameters used in the previous T2 imaging. The cross-sectional areas were measured in the two T2 images that were obtained in the normal position, and the distortion correction-free region, as well as the area error caused by geometric image distortion was calculated. Results: The geometrical distortion is gradually increased, from the magnet center to the outer region, in axial and coronal plane. The cross-sectional area error of gluteus maximus muscle and the knee extensors was as high as 9.27% and 3.16% in before and after distortion correction, respectively. Conclusion: The cross-sectional area of the muscles that suffered from the geometrical distortion is necessary to correct for the estimation of the intervention.

Geometrical Distortion-Resilient Watermarking Based on Image Features

  • Shim, Hiuk-Jae;Byeungwoo Jeon;Kim, Rin-Chul
    • Proceedings of the IEEK Conference
    • /
    • 2002.07b
    • /
    • pp.1268-1271
    • /
    • 2002
  • The major threat of geometric manipulations is that they change the positions of watermarks, therefore the detection process fails to extract watermark properly. Since they cause the same effects on the host image as watermarks simultaneously, evaluating the distorted host image can be helpful to measure the nature of distortions. In this paper, we propose a geometrical distortion-resilient watermarking algorithm based on this property. Firstly we evaluate the orientation of a host image by filtering it with directional Gabor kernels, then we insert embedding pattern aligned to the estimated orientation. In its detection step, we evaluate the orientation again by Gabor filtering, then simply project and average the projected value to obtain a 1-D projection average pattern. Finally, auto-correlation function of the 1-D projection average pattern identifies periodic peaks. Analysed are experimental results against geometrical attacks including aspect ratio changes.

  • PDF

An Accurate Calibration Technique for X ray Imaging System (X-선 영상 시스템의 정밀 캘리브레이션 기법)

  • Cho, Young-Bin;Gweon, Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.198-207
    • /
    • 1999
  • This paper presents an accurate algorithm for geometric calibration of X-ray imaging system. Calibration is a very important process for improving an imaging system performance. There has been a lot of previous works using linear camera modeling technique, where lens distortion is neglected and/or center of distortion is assumed to be known. Geometrical distortion of image intensifier, however, is very large and its center of distortion should be calculated. This paper presents a new calibration method to estimate the intensifier position and orientation, scale factor, distortion coefficient, magnification factor, and center of distortion using the least square method. We investigate the properties of the algorithm by computer simulation. Simulation results show that the parameters can be estimated accurately using the proposed algorithm.

  • PDF

Analysis of Off-axis Integral Floating System Using Concave Mirror

  • Kim, Young Min;Jung, Kwang-Mo;Min, Sung-Wook
    • Journal of the Optical Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.270-276
    • /
    • 2012
  • An off-axis integral floating system using a concave mirror is analyzed to resolve the image distortion incurred by the off-axis optical arrangement. The concave mirror can be adopted as the floating device to improve the optical efficiency. The image distortion due to the tilting axis of the concave mirror needs to be analyzed precisely to generate the pre-distortion image. In this paper, we calculate the image deformation in the off-axis structure of the concave mirror using the geometrical optics. Using the calculation results, the compensated elemental image can be generated for the pre-distortion integrated image, which can be projected to the floating 3D image without image distortion. The basic experiments of the off-axis integral floating are presented to prove and verify the proposal.

GCP(GROUND CONTROL POINT) FOR AUTOMATION OF THE HIGH RESOLUTION SATELLITE IMAGE REVISION

  • Jo, Myung-Hee;Jung, Yun-Jae
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.219-222
    • /
    • 2007
  • Today, use of high resolution satellite image with at least 1m resolution is expanding into many more areas including forest, river way, city, seashore and so forth for disaster prevention. Interest in this medium is increasing among the general public due to the roll-out to the private sector as Google earth, Virtual Earth and so forth. However, pre-processing process that revises the geometrical distortion that result at the time of photographing is required in order to use high resolution satellite image. The purpose of this research is to search the most accurate GCP(Ground Control Point) information acquisition method that is used for the revision of high resolution satellite image's geometrical distortion through automated processing. Through this, it is possible to contribute to increasing the level of accuracy at the time of high resolution satellite image revision and to secure promptness.

  • PDF

Geometrically Invariant Image Watermarking Using Connected Objects and Gravity Centers

  • Wang, Hongxia;Yin, Bangxu;Zhou, Linna
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.11
    • /
    • pp.2893-2912
    • /
    • 2013
  • The design of geometrically invariant watermarking is one of the most challenging work in digital image watermarking research area. To achieve the robustness to geometrical attacks, the inherent characteristic of an image is usually used. In this paper, a geometrically invariant image watermarking scheme using connected objects and gravity center is proposed. First, the gray-scale image is converted into the binary one, and the connected objects according to the connectedness of binary image are obtained, then the coordinates of these connected objects are mapped to the gray-scale image, and the gravity centers of those bigger objects are chosen as the feature points for watermark embedding. After that, the line between each gravity center and the center of the whole image is rotated an angle to form a sector, and finally the same version of watermark is embedded into these sectors. Because the image connectedness is topologically invariant to geometrical attacks such as scaling and rotation, and the gravity center of the connected object as feature points is very stable, the watermark synchronization is realized successfully under the geometrical distortion. The proposed scheme can extract the watermark information without using the original image or template. The simulation results show the proposed scheme has a good invisibility for watermarking application, and stronger robustness than previous feature-based watermarking schemes against geometrical attacks such as rotation, scaling and cropping, and can also resist common image processing operations including JPEG compression, adding noise, median filtering, and histogram equalization, etc.

Conversion of Fisheye Image to Perspective Image Using Nonlinear Scaling Function (비선형 스케일링 함수를 이용한 어안 영상의 원근 변환)

  • Kim, Tae-Woo;Cho, Tae-Kyung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.1
    • /
    • pp.117-121
    • /
    • 2009
  • The fisheye image acquired with a fisheye camera has wider field of view than a general use camera. But large distortion of the object in the image requires conversion of the fisheye image to the perspective image because of user's difficult perception. The existing Ishii's method[1] has the problem that the object can has sire and geometrical distortion in the transformed image because it uses equidistance projection. This paper presented a conversion technique of the fisheye image to the perspective image using sealing function. In the experiments, it was shown that our method reduced size and geometrical distortion by applying the scaling function.

An Image Warping Method for Implementation of an Embedded Lens Distortion Correction Algorithm (내장형 렌즈 왜곡 보정 알고리즘 구현을 위한 이미지 워핑 방법)

  • Yu, Won-Pil;Chung, Yun-Koo
    • The KIPS Transactions:PartB
    • /
    • v.10B no.4
    • /
    • pp.373-380
    • /
    • 2003
  • Most of low cost digital cameras reveal relatively high lens distortion. The purpose of this research is to compensate the degradation of image quality due to the geometrical distortion of a lens system. The proposed method consists of two stages : calculation of a lens distortion coefficient by a simplified version of Tsai´s camera calibration and subsequent image warping of the original distorted image to remove geometrical distortion based on the calculated lens distortion coefficient. In the lens distortion coefficient calculation stage, a practical method for handling scale factor ratio and image center is proposed, after which its feasibility is shown by measuring the performance of distortion correction using a quantitative image quality measure. On the other hand, in order to apply image warping via inverse spatial mapping using the result of the lens distortion coefficient calculation stage, a cubic polynomial derived from an adopted radial distortion lens model must be solved. In this paper, for the purpose of real-time operation, which is essential for embedding into an information device, an approximated solution to the cubic polynomial is proposed in the form of a solution to a quadratic equation. In the experiment, potential for real-time implementation and equivalence in performance as compared with that from cubic polynomial solution are shown.

Distortion Corrected Black and White Document Image Generation Based on Camera (카메라기반의 왜곡이 보정된 흑백 문서 영상 생성)

  • Kim, Jin-Ho
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.11
    • /
    • pp.18-26
    • /
    • 2015
  • Geometric distortion and shadow effect due to capturing angle could be included in document copy images that are captured by a camera in stead of a scanner. In this paper, a clean black and white document image generation algorithm by distortion correction and shadow elimination based on a camera, is proposed. In order to correct geometric distortion such as straightening un-straight boundary lines occurred by camera lens radial distortion and eliminating outlying area included by camera direction, second derivative filter based document boundary detection method is developed. Black and white images have been generated by adaptive binarization method by eliminating shadow effect. Experimental results of the black and white document image generation algorithm by recovering geometrical distortion and eliminating shadow effect for the document images captured by smart phone camera, shows very good processing results.