• Title/Summary/Keyword: geometric mean model

Search Result 124, Processing Time 0.029 seconds

Analysis of Accident Characteristics and Improvement Strategies of Flash Signal-operated Intersection in Seoul (서울시 점멸신호 운영에 따른 교통사고 분석 및 개선방안에 관한 연구)

  • Kim, Seung-Jun;Park, Byung-Jung;Lee, Jin-Hak;Kim, Ok-Sun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.13 no.6
    • /
    • pp.54-63
    • /
    • 2014
  • Traffic accident frequency and severity level in Korea are known to be very serious. Especially the number of pedestrian fatalities was much worse and 1.6 time higher than the OECD average. According to the National Police Agency, the flash signals are reported to have many safety benefits as well as travel time reduction, which is opposed to the foreign studies. With this background of expanding the flash signal, this research aims to investigate the overall impact of the flash signal operation on safety, investigating and comparing the accident occurrence on the flash signal and the full signal intersections. For doing this accident prediction models for both flash and full signal intersections were estimated using independent variables (geometric features and traffic volume) and 3-year (2011-2013) accident data collected in Seoul. Considering the rare and random nature of accident occurrence and overdispersion (variance > mean) of the data, the negative binomial regression model was applied. As a result, installing wider crosswalk and increasing the number of pedestrian push buttons seemed to increase the safety of the flash signal intersections. In addition, the result showed that the average accident occurrence at the flash signal intersections was higher than at the full signal-operated intersections, 9% higher with everything else the same.

A Reflectance Normalization Via BRDF Model for the Korean Vegetation using MODIS 250m Data (한반도 식생에 대한 MODIS 250m 자료의 BRDF 효과에 대한 반사도 정규화)

  • Yeom, Jong-Min;Han, Kyung-Soo;Kim, Young-Seup
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.445-456
    • /
    • 2005
  • The land surface parameters should be determined with sufficient accuracy, because these play an important role in climate change near the ground. As the surface reflectance presents strong anisotropy, off-nadir viewing results a strong dependency of observations on the Sun - target - sensor geometry. They contribute to the random noise which is produced by surface angular effects. The principal objective of the study is to provide a database of accurate surface reflectance eliminated the angular effects from MODIS 250m reflective channel data over Korea. The MODIS (Moderate Resolution Imaging Spectroradiometer) sensor has provided visible and near infrared channel reflectance at 250m resolution on a daily basis. The successive analytic processing steps were firstly performed on a per-pixel basis to remove cloudy pixels. And for the geometric distortion, the correction process were performed by the nearest neighbor resampling using 2nd-order polynomial obtained from the geolocation information of MODIS Data set. In order to correct the surface anisotropy effects, this paper attempted the semiempirical kernel-driven Bi- directional Reflectance Distribution Function(BRDF) model. The algorithm yields an inversion of the kernel-driven model to the angular components, such as viewing zenith angle, solar zenith angle, viewing azimuth angle, solar azimuth angle from reflectance observed by satellite. First we consider sets of the model observations comprised with a 31-day period to perform the BRDF model. In the next step, Nadir view reflectance normalization is carried out through the modification of the angular components, separated by BRDF model for each spectral band and each pixel. Modeled reflectance values show a good agreement with measured reflectance values and their RMSE(Root Mean Square Error) was totally about 0.01(maximum=0.03). Finally, we provide a normalized surface reflectance database consisted of 36 images for 2001 over Korea.

Factors Associated with the Concentrations of Urinary Creatinine in Korean Children and Adolescents (한국 어린이와 청소년의 요중 크레아티닌 농도와 영향요인에 대한 연구)

  • Lee, Jin-Heon;Ahn, Ryeong-Mi;Kang, Hee-Sook;Choi, Suk-Nam;Hong, Chun-Pyo;Kim, Jin-Gyong
    • Journal of Environmental Health Sciences
    • /
    • v.38 no.4
    • /
    • pp.291-299
    • /
    • 2012
  • Creatinine-adjustment is an important process in the urinary monitoring of the environmental exposure of children and adolescents. The purpose of this study was to investigate the concentrations of urinary creatinine and factors associated with them among Korean children and adolescents. We recruited 1,025 persons from 128 extracted schools. They were from three to 18 years old and supplied urine samples for measuring creatinine. The concentrations of urinary creatinine were 98.18 mg/dl (SD, 67.67) in arithmetic mean and 72.05 mg/dl (GSD 2.49) in geometric mean, were significantly higher among male children/adolescents than females in all age groups, and higher values appeared following increasing ages, heights and BMIs. The rates of the number who were below the lowest limit recommended by WHO (<30 mg/dl) were 25.57% among three to four year olds, 21.77% among five to six year olds, 20.0% among seven to eight year olds and 14.69% among nine to ten year olds, respectively. The rates of those above the highest limit (>300 mg/dl) were 0.0% among three to twelve year olds. The coefficient of determination R-square of the fitted regression model for urinary creatinine was 27.4% with general characteristic variables of sex, age, BMI and height. The significant variables among these were height (standardized beta = 0.372) and age (standardized beta = 0.129). Another coefficient of determination R-square was 15.3% with dietary habit variables of smoking, drinking, dining area, number of meals and snacks, and intake of milk food, cup-noodles, canned foods, popcorn, nachos, and hamburgers. In conclusion, the concentration of urinary creatinine was significantly lower in children than in adults, and was very significantly associated with the height of children. Therefore, children need the recommended concentrations for urinary creatinine, as distinguished from adults.

Estimation of hourly daytime air temperature on slope in complex terrain corrected by hourly solar radiation (복잡지형 경사면의 일사 영향을 반영한 매시 낮 기온 추정 방법)

  • Yun, Eun-jeong;Kim, Soo-ock
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.20 no.4
    • /
    • pp.376-385
    • /
    • 2018
  • To estimate the hourly temperature distribution due to solar radiation during the day, on slope in complex terrain, an empirical formula was developed including the hourly deviation in the observed temperature following solar radiation deviation, at weather stations on the east-facing and west-facing slopes. The solar radiation effect was simulated using the empirical formula to estimate hourly temperature at 11 weather observation sites in mountainous agricultural areas, and the result was verified for the period from January 2015 to December 2017. When the estimated temperature was compared with the control, only considering temperature lapse rate, it was found that the tendency to underestimate the temperature from 9 am to 3 pm was reduced with the use of an empirical formula in the form of linear expression; consequently, the estimation error was reduced as well. However, for the time from 5 pm to 6 pm, the estimation error was smaller when a hyperbolic equation drawn from the deviation in solar radiation on the slope, which was calculated based on geometric conditions, was used instead of observed values. The reliability of estimating the daytime temperature at 3 pm was compared with existing estimation model proposed in other studies; the estimation error could be mitigated up to an ME (mean error) of $-0.28^{\circ}C$ and RMSE (root mean square error) of $1.29^{\circ}C$ compared to the estimation error in previous models (ME $-1.20^{\circ}C$, RMSE $2.01^{\circ}C$).

The Phenomenological Comparison between Results from Single-hole and Cross-hole Hydraulic Test (균열암반 매질 내 단공 및 공간 간섭 시험에 대한 현상적 비교)

  • Kim, Tae-Hee;Kim, Kue-Young;Oh, Jun-Ho;Hwang, Se-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.5
    • /
    • pp.39-53
    • /
    • 2007
  • Generally, fractured medium can be described with some key parameters, such as hydraulic conductivities or random field of hydraulic conductivities (continuum model), spatial and statistical distribution of permeable fractures (discrete fracture network model). Investigating the practical applicability of the well-known conceptual models for the description of groundwater flow in fractured media, various types of hydraulic tests were applied to studies on the highly fractured media in Geumsan, Korea. Results from single-hole packer test show that the horizontal hydraulic conductivities in the permeable media are between $7.67{\times}10^{-10}{\sim}3.16{\times}10^{-6}$ m/sec, with $7.70{\times}10^{-7}$ m/sec arithmetic mean and $2.16{\times}10^{-7}$ m/sec geometric mean. Total number of test interval is 110 at 8 holes. The number of completely impermeable interval is 9, and the low permeable interval - below $1.0{\times}10^{-8}$ m/sec is 14. In other words, most of test intervals are permeable. The vertical distribution of hydraulic conductivities shows apparently the good correlation with the results of flowmeter test. But the results from the cross-hole test show some different features. The results from the cross-hole test are highly related to the connectivity and/or the binary properties of fractured media; permeable and impermeable. From the viewpoint of the connection, the application of the general stochastic approach with a single continuum model may not be appropriate even in the moderately or highly permeable fractured medium. Then, further studies on the investigation method and the analysis procedures should be required for the reasonable and practical design of the conceptual model, with which the binary properties, including permeable/impermeable features, can be described.

Orthophoto and DEM Generation in Small Slope Areas Using Low Specification UAV (저사양 무인항공기를 이용한 소규모 경사지역의 정사영상 및 수치표고모델 제작)

  • Park, Jin Hwan;Lee, Won Hee
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.34 no.3
    • /
    • pp.283-290
    • /
    • 2016
  • Even though existing methods for orthophoto production in traditional photogrammetry are effective in large areas, they are inefficient when dealing with change detection of geometric features and image production for short time periods in small areas. In recent years, the UAV (Unmanned Aerial Vehicle), equipped with various sensors, is rapidly developing and has been implemented in various ways throughout the geospatial information field. The data and imagery of specific areas can be quickly acquired by UAVs at low costs and with frequent updates. Furthermore, the redundancy of geospatial information data can be minimized in the UAV-based orthophoto generation. In this paper, the orthophoto and DEM (Digital Elevation Model) are generated using a standard low-end UAV in small sloped areas which have a rather low accuracy compared to flat areas. The RMSE of the check points is σH = ±0.12 m on a horizontal plane and σV = ±0.09 m on a vertical plane. As a result, the maximum and mean RMSE are in accordance with the working rule agreement for the airborne laser scanning surveying of the NGII (National Geographic Information Institute) on a 1/500 scale digital map. Through this study, we verify the possibilities of the orthophoto generation in small slope areas using general-purpose low specification UAV rather than a high cost surveying UAV.

Analysis for Practical use as KOMPSAT-2 Imagery for Product of Geo-Spatial Information (지형공간정보 생성을 위한 KOPMSAT-2 영상의 활용성 분석)

  • Lee, Hyun-Jik;You, Ji-Ho;Koh, Young-Chang
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.21-35
    • /
    • 2009
  • KOMPSAT-2 is the seventh high-resolution image satellite in the world that provides both 1m-grade panchromatic images of the GSD and 4m-grade multispectral images of the GSD. It's anticipated to be used across many different areas including mapping, territory monitoring and environmental watch. However, due to the complexity and security concern involved with the use of the MSC, the use of KOMPSAT-2 images are limited in terms of geometric images, such as satellite orbits and detailed mapping information. Therefore, this study aims to produce DEM and orthoimage by using the stereo images of KOMPSAT-2, and to explore the applicability of geo-spatial information with KOMPSAT -2. Orientation interpretations were essential for the production of DEM and orthoimage using KOMPSAT-2 images. In the study, they are performed by utilizing both RPC and GCP. In this study, the orientation interpretations are followed by the generation of DEM and orthoimage, and the analysis of their accuracy based on a 1:5,000 digital map. The accuracy analysis of DEM is performed and the results indicate that their altitudes are, in general, higher than those obtained from the digital map. The altitude discrepancies on plains, hills and mountains are calculated as 1.8m, 7.2m, and 11.9m, respectively. In this study, the mean differences between horizontal position between the orthoimage data and the digital map data are found to be ${\pm}3.081m$, which is in the range of ${\pm}3.5m$, within the permitted limit of a 1:5,000 digital map. KOMPSAT-2 images are used to produce DEM and orthoimage in this research. The results suggest that DEM can be adequately used to produce digital maps under 1:5,000 scale.

  • PDF

Relationship between Expandability, MacEwan Crystallite Thickness, and Fundamental Particle Thickness in Illite-Smectite Mixed Layers (일라이트-스멕타이트 혼합층광물의 팽창성과 MacEwan 결정자 및 기본입자두께에 관한 연구)

  • 강일모;문희수;김재곤;송윤구
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.95-103
    • /
    • 2002
  • The object of this study was to interpret the ralationship between expandability (% $S_{XRD}$), MacEwan crystallite thickness ( $N_{CSD}$), and mean fundamental particle thickness ( $N_{F}$ ) in illite-semctite mixed layer (I-S), quantitatively. This interpretation was extracted from comparison of two structural models (MacEwan crystallite model and fundamental particle model) of I-S mixed layers. In I-S structure, % $S_{XRD}$, $N_{CSD}$, and $N_{F}$ are not independent parameters but are related to each others by particular geometric relations. % $S_{XRD}$ is dependent on $N_{CSD}$ by short-stack effect, whereas, % $S_{XRD}$ and $N_{F}$ have relation to smectite interlayer number (Ns)=( $N_{F-}$1)/(100%/% $S_{XRD-}$ $N_{F}$ . Therefore, % $S_{XRD}$ and $N_{F}$ should satisfy a specific physical condition, 1< $N_{F}$ <100%/% $S_{XRD}$, because $N_{s}$ is positive. Based on this condition, this study suggested % $S_{XRD}$ vs $N_{F}$ diagram which can be used to interpret % $S_{XRD}$, $N_{F}$ , $N_{S}$ , and ordering, quantitatively. The diagram was examined by XRD data for I-S samples from Ceumseongsan volcanic complex, Korea. I-S samples showed that $N_{F}$ departs from the physical upper-limit ( $N_{F}$ =100%/% $S_{XRD}$) with decrease in % $S_{XRD}$. This phenomenon may happen due to decrease of stacking-capability of fundamental particles with their thickening.g.s with their thickening.g.

Development of a New Flood Index for Local Flood Severity Predictions (국지홍수 심도예측을 위한 새로운 홍수지수의 개발)

  • Jo, Deok Jun;Son, In Ook;Choi, Hyun Il
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.1
    • /
    • pp.47-58
    • /
    • 2013
  • Recently, an increase in the occurrence of sudden local flooding of great volume and short duration due to global climate changes has occasioned the significant danger and loss of life and property in Korea as well as most parts of the world. Such a local flood that usually occurs as the result of intense rainfall over small regions rises quite quickly with little or no advance warning time to prevent flood damage. To prevent the local flood damage, it is important to quickly predict the flood severity for flood events exceeding a threshold discharge that may cause the flood damage for inland areas. The aim of this study is to develop the NFI (New Flood Index) measuring the severity of floods in small ungauged catchments for use in local flood predictions by the regression analysis between the NFI and rainfall patterns. Flood runoff hydrographs are generated from a rainfall-runoff model using the annual maximum rainfall series of long-term observations for the two study catchments. The flood events above a threshold assumed as the 2-year return period discharge are targeted to estimate the NFI obtained by the geometric mean of the three relative severity factors, such as the flood magnitude ratio, the rising curve gradient, and the flooding duration time. The regression results show that the 3-hour maximum rainfall depths have the highest relationships with the NFI. It is expected that the best-fit regression equation between the NFI and rainfall characteristics can provide the basic database of the preliminary information for predicting the local flood severity in small ungauged catchments.

Feasibility Calculation of FaSTMECH for 2D Velocity Distribution Simulation in Meandering Channel (사행하천의 2차원 유속분포 모의를 위한 FaSTMECH 모형의 적용성 검토)

  • Son, Geunsoo;You, Hojun;Kim, Dongsu
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.34 no.6
    • /
    • pp.1753-1764
    • /
    • 2014
  • Numerical flow simulation models in the riverine environments have been widely utilized for analyzing flow dynamics in various degrees in researches and practical applications. However, most of the simulated results have been validated based on the data from indoor experimental models or very limited in-situ measurements. Therefore, it has been required to more accurately validate the performance of the numerical models in terms of the detailed field observations. In particular, it was also hard to validate the performances of the existing numerical models in the real meandered river channels that encompass more sophisticated flow and geometric structures. Recently, advancements of the modern flow measuring instrumentations such as acoustic Doppler current profilers (ADCPs) enabled us to efficiently acquire the detailed flow field in the broad range of river channels, thus that it became to be possible to accurately validate any numerical models with the field observations. In this study, based on the detailed flow measurements in a actual meandered river channel using ADCP, we validated FaSTMECH model in iRIC in terms of water surface elevation, which is relatively new but began to get highlighted in the research areas. As the validation site, a meandering channel in River Experiment Center of KICT was chosen, which has 6.5 m of width, 0.38m of flow depth, 1.54 m3/s of flow discharge, 0.61 m/s of mean flow velocity, and 1.2 of sinuosity. As results, whereas the FaSTMECH precisely simulated water surface elevation, simulated velocity field in the bend did not match well with ADCP dataset.