• 제목/요약/키워드: geological fracture

검색결과 146건 처리시간 0.027초

Mechanical and fracture behavior of rock mass with parallel concentrated joints with different dip angle and number based on PFC simulation

  • Zhao, Weihua;Huang, Runqiu;Yan, Ming
    • Geomechanics and Engineering
    • /
    • 제8권6호
    • /
    • pp.757-767
    • /
    • 2015
  • Rock mass is an important engineering material. In hydropower engineering, rock mass of bank slope controlled the stability of an arch dam. However, mechanical characteristics of the rock mass are not only affected by lithology, but also joints. On the basis of field geological survey, this paper built rock mass material containing parallel concentrated joints with different dip angle, different number under different stress conditions by PFC (Particle Flow Code) numerical simulation. Next, we analyzed mechanical property and fracture features of this rock mass. The following achievements have been obtained through this research. (1) When dip angle of joints is $15^{\circ}$ and $30^{\circ}$, with the increase of joints number, peak strength of rock mass has not changed much. But when dip angle increase to $45^{\circ}$, especially increase to $60^{\circ}$ and $75^{\circ}$, peak strength of rock mass decreased obviously with the increase of joints number. (2) With the increase of confining stress, peak strengths of all rock mass have different degree of improvement, especially the rock mass with dip angle of $75^{\circ}$. (3) Under the condition of no confining stress, dip angle of joints is low and joint number is small, existence of joints has little influence on fracture mode of rock mass, but when joints number increase to 5, tensile deformation firstly happened at joints zone and further resulted in tension fracture of the whole rock mass. When dip angle of joints increases to $45^{\circ}$, fracture presented as shear along joints, and with increase of joints number, strength of rock mass is weakened caused by shear-tension fracture zone along joints. When dip angle of joints increases to $60^{\circ}$ and $75^{\circ}$, deformation and fracture model presented as tension fracture zone along concentrated joints. (4) Influence of increase of confining stress on fracture modes is to weaken joints' control function and to reduce the width of fracture zone. Furthermore, increase of confining stress translated deformation mode from tension to shear.

태양방위각 보상에 의한 지질학적 선구조 분석 (Analysis of Geological Lineaments with Compensation of the Sun's Azimuth Angle)

  • 이진걸
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.947-950
    • /
    • 1998
  • Geological structures such as fault and fracture patterns provide important information about preliminary exploration of mineralized areas and geological characterization. We apply a filtering method taking the sun's azimuth angle into account to a shaded relief image derived from a digital elevation model (DEM), by which even linear edges extending parallel to the sun direction can be effectively extracted. Then, Generalized Hough tranform is applied to extract lineanments which correspond to fault and fracture patterns.

  • PDF

산사태 발생 자료 분석에 의한 장흥지역의 전단 단열계 연구 (Study of Shear Fracture System of Janghung Area by Landslide Location Analysis)

  • 이사로;최위찬;민경덕
    • 자원환경지질
    • /
    • 제33권6호
    • /
    • pp.547-556
    • /
    • 2000
  • The purpose of this study is to analyze shear fracture system using landslide location occurred 1998 at Janghung area. For the geological implication, foliation was surveyed and analyzed, and location of landslide, geological structure and topography were constructed into spatial database using GIS. With the constructed spatial database, shear fracture system was assessed by the relation analysis between strike and dip of the foliation and aspect and slope of the topography. We compared strike and dip of foliation and aspect and slope of topography and recognized the typical fracture pattern, strike and dip of joint, that coincided with shear fracture system. The result tells us that foliation of gneiss has geometrical relation to joint or fault that leading landslide. GIS was used to analyze vast data efficiently and the result can be used to assess the landslide susceptibility as important factor.

  • PDF

A STUDY OF HYDRAULIC PROPERTIES IN A SINGLE FRACTURE WITH IN-PLANE HETEROGENEITY: AN EVALUATION USING OPTICAL MEASUREMENTS OF A TRANSPARENT REPLICA

  • Sawada, Atsushi;Sato, Hisashi
    • Nuclear Engineering and Technology
    • /
    • 제42권1호
    • /
    • pp.9-16
    • /
    • 2010
  • Experimental examinations for evaluating fracutres were conducted by using transparent replicas of a single fracture in order to obtain the fracture data to contribute to the methodlogy on how to improve the definitaion of representative parameter values used for a parallel plate fracture model. Quantitative aperture distribution and quantitative tracer concentration data at each point in time were obtained by measuring the attenuation of transmitted light through the fracture in high spatial resolution. the representative aperture values evaluated from the multiple different measurement methods, such as arithmetic mean of aperture distribution measured by the optical method, transport aperture evaluated from the tracer test, and average aperture evaluated from the fracture void volume measurement converged to a unique value that indicates the accuracy of this experimental study. The aperture data was employed for verifying the numerical simulation under the assuption of Local Cubic Law and showed that the calculated flow rate through the fracture is 10%-100% larger than hydraulic test results. The quantitative tracer concentration data is also very valuable for validating existing numerical code for advection dispersion transport in-plane heterogeneous fractures.

Dynamic mechanism of rock mass sliding and identification of key blocks in multi-fracture rock mass

  • Jinhai Zhao;Qi Liu;Changbao Jiang;Zhang Shupeng;Zhu Weilong;Ma Hailong
    • Geomechanics and Engineering
    • /
    • 제32권4호
    • /
    • pp.375-385
    • /
    • 2023
  • There are many joint fissures distributed in the engineering rock mass. In the process of geological history, the underground rock mass undergoes strong geological processes, and undergoes complex geological processes such as fracture breeding, expansion, recementation, and re-expansion. In this paper, the damage-stick-slip process (DSSP), an analysis model used for rock mass failure slip, was established to examine the master control and time-dependent mechanical properties of the new and primary fractures of a multi-fractured rock mass under the action of stress loading. The experimental system for the recemented multi-fractured rock mass was developed to validate the above theory. First, a rock mass failure test was conducted. Then, the failure stress state was kept constant, and the fractured rock mass was grouted and cemented. A secondary loading was applied until the grouted mass reached the intended strength to investigate the bearing capacity of the recemented multi-fractured rock mass, and an acoustic emission (AE) system was used to monitor AE events and the update of damage energy. The results show that the initial fracture angle and direction had a significant effect on the re-failure process of the cement rock mass; Compared with the monitoring results of the acoustic emission (AE) measurements, the master control surface, key blocks and other control factors in the multi-fractured rock mass were obtained; The triangular shaped block in rock mass plays an important role in the stress and displacement change of multi-fracture rock mass and the long fissure and the fractures with close fracture tip are easier to activate, and the position where the longer fractures intersect with the smaller fractures is easier to generate new fractures. The results are of great significance to a multi-block structure, which affects the safety of underground coal mining.

Diffusion-hydraulic properties of grouting geological rough fractures with power-law slurry

  • Mu, Wenqiang;Li, Lianchong;Liu, Xige;Zhang, Liaoyuan;Zhang, Zilin;Huang, Bo;Chen, Yong
    • Geomechanics and Engineering
    • /
    • 제21권4호
    • /
    • pp.357-369
    • /
    • 2020
  • Different from the conventional planar fracture and simplified Newton model, for power-law slurries with a lower water-cement ratio commonly used in grouting engineering, flow model in geological rough fractures is built based on ten standard profiles from Barton (1977) in this study. The numerical algorithm is validated by experimental results. The flow mechanism, grout superiority, and water plugging of pseudo plastic slurry are revealed. The representations of hydraulic grouting properties for JRCs are obtained. The results show that effective plugging is based on the mechanical mechanisms of the fluctuant structural surface and higher viscosity at the middle of the fissure. The formulas of grouting parameters are always variable with the roughness and shear movement, which play a key role in grouting. The roughness can only be neglected after reaching a threshold. Grouting pressure increases with increasing roughness and has variable responses for different apertures within standard profiles. The whole process can be divided into three stationary zones and three transition zones, and there is a mutation region (10 < JRCs < 14) in smaller geological fractures. The fitting equations of different JRCs are obtained of power-law models satisfying the condition of -2 < coefficient < 0. The effects of small apertures and moderate to larger roughness (JRCs > 10.8) on the permeability of surfaces cannot be underestimated. The determination of grouting parameters depends on the slurry groutability in terms of its weakest link with discontinuous streamlines. For grouting water plugging, the water-cement ratio, grouting pressure and grouting additives should be determined by combining the flow conditions and the apparent widths of the main fracture and rough surface. This study provides a calculation method of grouting parameters for variable cement-based slurries. And the findings can help for better understanding of fluid flow and diffusion in geological fractures.

경주 남부지역의 양산단층의 구조에 관한 연구 (A Study on the Structure of the Yangsan Fault In the southern part of Kyeongju)

  • 김영화;이기화
    • 자원환경지질
    • /
    • 제20권4호
    • /
    • pp.247-260
    • /
    • 1987
  • 양산단층의 구조를 밝히는 연구의 일환으로 경주 남쪽지역을 대상으로하여 지질 및 저주파 전자탐사방법에 의한 단층탐사를 실시하였다. 그 결과 양산단층지역의 구조적 특성에서부터 파쇄대의 규모, 단층선의 위치 등에 대한 새로운 사실들이 밝혀졌으며, 단층파쇄대의 규모와 단층변의 위치에 있어서 지질 및 지전기학적 연구성과가 서로 일치됨이 확인 되었다.

  • PDF

불연속 파쇄모델을 이용한 파쇄 매질에서의 지하수 유동 시뮬레이션 (Simulation of Groundwater Flow in Fractured Porous Media using a Discrete Fracture Model)

  • 박유철;이강근
    • 자원환경지질
    • /
    • 제28권5호
    • /
    • pp.503-512
    • /
    • 1995
  • 2차원 불연속 절리 모델 (Discrete Fracture Model)을 사용하여 절리망 내에서 지하수 흐름을 시뮬레이션하였다. 불연속 절리 모델에서는 지하수가 오직 절리망을 통해서 흐른다고 가정한다. 이와 같은 분석은 결정질암 같이 지질 매체의 투수율이 매우 낮은 경우에 유용하다. 하지만 불연속 절리망을 완벽하게 구현하는 것이 불가능하므로, 이에 접근하는 방법으로 확률 통계적 모델이 제안되었다. 확률-통계적 모텔은 특성인자(밀도, 방향, 길이, 틈새두께 등)가 특별한 분포 유형을 갖는다고 가정한다. 확률-통계적 모델은 가정된 분포를 따르도록 특성인자를 생성한다. 이 후 본 모델을 통해 분석된 몇몇 특성인자를 가지고 절리망을 생성한다. 절리망을 생성한 이 후 지하수의 유통을 계산하기 위해 유한요소법을 적용하였다. 이 때 일차원 선요소가 유한요소망의 주요 요소이다. 시뮬레이션 결과는 절리망 내의 주요 흐름 경로를 통해 보여진다. 절리망 내의 지하수 속도를 비교하여 주요 흐름 경로를 찾아낸다. 본 연구에서 개발된 모델은 절리망 내의 지하수 흐름에 특성인자들이 미치는 영향을 평가할 수 있는 방법을 제공한다. 이를 위하여 30번의 생성을 하는 몬테카를로 시뮬레이션을 통해서 여러 특성 인자들이 지하수 흐름에 미치는 영향을 평가하였다.

  • PDF

KURT 부지 조건에서 A-KRS 입지 영역 도출 (Potential repository domain for A-KRS at KURT facility site)

  • 김경수;박경우;김건영;최희주
    • 방사성폐기물학회지
    • /
    • 제10권3호
    • /
    • pp.151-159
    • /
    • 2012
  • 선진핵주기 고준위폐기물 처분시스템의 개념설계를 위하여 가상의 처분장 부지인 KURT 시설 부지의 지질조건에서 A-KRS의 입지 후보영역을 선정하였다. 부지의 모암은 한반도에 폭넓게 분포하는 중생대 화강암을 대표하는 것으로 열수변질작용을 받은 흔적이 있으며, 지표수와 지하수계는 일차적으로 지형의 영향을 받아 부지에서 남동진하여 금강으로 배출된다. 부지 내에서 확인된 단열대는 2 등급 규모로서 N-S와 E-W 주향으로 우세하게 분포한다. A-KRS 입지 후보영역을 제안하기 위하여 부지 내에서 공간적으로 -500 m 심도까지 발달되는 것으로 예상되는 단열대를 교차하지 않고 동시에 단열대로부터 50 m 이상의 충분한 이격거리를 갖는 조건에서 처분장 규모의 영역을 확보할 수 있는지를 분석하였다. 분석 결과, 본 부지의 중앙부에 우세하게 분포하는 남북 방향의 주향을 갖는 단열대의 서쪽 영역의 -200 m 이하 심도에서 충분한 영역을 확보할 수 있는 것으로 확인되었다. 단열대의 분포 특성을 감안할 때 부지의 좌하단 영역이 지질학적, 수리지질학적 측면에서 A-KRS 입지 영역으로 가장 양호한 것으로 판단된다.