• Title/Summary/Keyword: geological disposal

Search Result 248, Processing Time 0.021 seconds

MOVING FORWARD WITH RADIOACTIVE WASTE MANAGEMENT IN THE UK

  • Atherton, Elizabeth;Mathieson, John
    • Nuclear Engineering and Technology
    • /
    • v.39 no.6
    • /
    • pp.697-702
    • /
    • 2007
  • Radioactive waste has been produced in the UK for many decades. Since the 1950' s much of this has been associated with civil nuclear power production and the nuclear weapons programme. There have been a number of unsuccessful attempts in the UK since the 1980s to deal with the waste and find suitable sites for its disposal. However, the UK Government has addressed this and in 2001 introduced the "Managing Radioactive Waste Safely" programme. The aim of this was to make decisions on the long-term radioactive waste management policy through stakeholder engagement. In 2006, it adopted a policy of geological disposal for higher activity wastes and following further consultations, is now at the stage of choosing how that policy should be implemented.

Selection of Key Radionuclides for P&T Based on Radiological Impact Assessment for the Deep Geological Disposal of Spent PWR/CANDU/DUPIC Fuels

  • Lee, Dong-Won;Chung, Chang-Hyun;Kim, Chang-Lak;Park, Joo-Wan
    • Nuclear Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.231-240
    • /
    • 2001
  • When it is assumed that PWR, CANDU and DUPIC spent fuels are disposed of in deep geological repository, consequent annual individual doses are calculated, and it is shown that doses meet the regulatory limit. From these results, the hazardous radionuclides applicable to partitioning and transmutation are selected. These selected radionuclides such as Tc-99, Ⅰ-129, Cs-135 and Np-237 are then reviewed in terms of partitioning and transmutation. Separation of I-129, Np-237 and Tc-99 from spent fuels is considered desirable, and transmutation of these radionuclides results in remarkable hazard reduction. However, it is concluded that separation and transmutation of Cs-135 may be ineffective although it is classified into a hazardous radionuclide.

  • PDF

An Improved Concept of Deep Geological Disposal System Considering Arising Characteristics of Spent Fuels From Domestic Nuclear Power Plants (국내 원자력발전소에서의 사용후핵연료 발생 특성을 고려한 심층 처분시스템 개선)

  • Lee, Jongyoul;Kim, Inyoung;Choi, Heuijoo;Cho, Dongkeun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.4
    • /
    • pp.405-418
    • /
    • 2019
  • Based on spent fuels characteristics from domestic nuclear power plants and a disposal scenario from the current basic plan for high-level radioactive waste management, an improved disposal system has been proposed that enhances disposal efficiency and economic effectiveness compared to the existing disposal system. For this purpose, two disposal canisters concepts were derived from the length of the spent fuel generated from the nuclear power plants. In the disposal scenario, the acceptable amount of decay heat for each disposal container was determined, taking into account the discharge and disposal times of spent fuels in accordance with the current basic plan. Based on the determined decay heat of the two types of disposal canisters and the associated disposal system, thermal stability analyses were performed to confirm their suitability to the proposed disposal system design requirement and disposal efficiency assessment. The results of this study confirm 20% reduction in the disposal area and 20% increase in disposal density for the proposed disposal system compared to the existing system. These results can be used to establish a spent fuel management policy and to design a viable commercial disposal system.

Safety Assessment on Long-term Radiological Impact of the Improved KAERI Reference Disposal System (the KRS+)

  • Ju, Heejae;Kim, In-Young;Lee, Youn-Myoung;Kim, Jung-Woo;Hwang, Yongsoo;Choi, Heui-joo;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.75-87
    • /
    • 2020
  • The Korea Atomic Energy Research Institute (KAERI) has developed geological repository systems for the disposal of high-level wastes and spent nuclear fuels (SNFs) in South Korea. The purpose of the most recently developed system, the improved KAERI Reference Disposal System Plus (KRS+), is to dispose of all SNFs in Korea with improved disposal area efficiency. In this paper, a system-level safety assessment model for the KRS+ is presented with long-term assessment results. A system-level model is used to evaluate the overall performance of the disposal system rather than simulating a single component. Because a repository site in Korea has yet to be selected, a conceptual model is used to describe the proposed disposal system. Some uncertain parameters are incorporated into the model for the future site selection process. These parameters include options for a fractured pathway in a geosphere, parameters for radionuclide migration, and repository design dimensions. Two types of SNF, PULS7 from a pressurized water reactor and Canada Deuterium Uranium from a heavy water reactor, were selected as a reference inventory considering the future cumulative stock of SNFs in Korea. The highest peak radiological dose to a representative public was estimated to be 8.19×10-4 mSv·yr-1, primarily from 129I. The proposed KRS+ design is expected to have a high safety margin that is on the order of two times lower than the dose limit criterion of 0.1 mSv·yr-1.

Development of CANDU Spent Fuel Disposal Concepts for the Improvement of Disposal Efficiency (처분효율 향상을 위한 CANDU 사용후핵연료 처분개념 도출)

  • Lee, Jong-Youl;Cho, Dong-Geun;Kook, Dong-Hak;Lee, Min-Soo;Choi, Heui-Joo;Lee, Yang
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.7 no.4
    • /
    • pp.229-236
    • /
    • 2009
  • There are two types of spent fuels generated from nuclear power plants, CANDU type and PWR type. PWR spent fuels which include a lot of reusable material can be considered to be recycled. CANDU spent fuels are considered to directly disposed in deep geological formation, since they have little reusable material. In this study, based on the Korean Reference spent fuel disposal System(KRS) which is to dispose both PWR and CANDU spent fuels, the more effective CANDU spent fuel disposal systems have been developed. To do this, the disposal canister has been modified to hold the storage basket which can load 60 spent fuel bundles. From these modified disposal canisters, the disposal systems to meet the thermal requirement for which the temperature of the buffer materials should not be over $100^{\circ}C$ have been proposed. These new disposals have made it possible to introduce the concept of long tenn storage and retrievabililty and that of the two-layered disposal canister emplacement in one disposal hole. These disposal concepts have been compared and analyzed with the KRS CANDU spent fuel disposal system in terms of disposal effectiveness. New CANDU spent fuel disposal concepts obtained in this study seem to improve thermal effectiveness, U-density, disposal area, excavation volume, and closure material volume up to 30 - 40 %.

  • PDF

A Foreign Cases Study of the Deep Borehole Disposal System for High-Level Radioactive Waste (고준위 방사성폐기물 심부시추공 처분시스템 개발 해외사례 분석)

  • Lee, Jongyoul;Kim, Geonyoung;Bae, Daeseok;Kim, Kyeongsoo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.12 no.2
    • /
    • pp.121-133
    • /
    • 2014
  • If the spent fuels or the high-level radioactive wastes can be disposed of in the depth of 3~5 km and more stable rock formation, it has several advantages. For example, (1)significant fluid flow through basement rock is prevented, in part, by low permeability, poorly connected transport pathways, and (2)overburden self-sealing. (3)Deep fluids also resist vertical movement because they are density stratified and reducing conditions will sharply limit solubility of most dose-critical radionuclides at the depth. Finally, (4) high ionic strengths of deep fluids will prevent colloidal transport. Therefore, as an alternative disposal concept to the deep geological disposal concept(DGD), very deep borehole disposal(DBD) technology is under consideration in number of countries in terms of its outstanding safety and cost effectiveness. In this paper, for the preliminary applicability analyses of the DBD system for the spent fuels or high level wastes, the DBD concepts which have been developed by some countries according to the rapid advance in the development of drilling technology were reviewed. To do this, the general concept of DBD system was checked and the study cases of foreign countries were described and analyzed. These results will be used as an input for the analyses of applicability for DBD in Korea.

A Prediction of Thermal Conductivity for Compacted Bentonite Buffer in the High-level Radioactive Waste Repository (고준위폐기물 처분시설의 압축 벤토나이트 완충재의 열전도도 추정)

  • Yoon, Seok;Lee, Min-Soo;Kim, Geon-Young;Lee, Seung-Rae;Kim, Min-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.7
    • /
    • pp.55-64
    • /
    • 2017
  • A geological repository has been considered one of the most adequate options for the disposal of high-level radioactive waste. A geological repository will be constructed in a host rock at a depth of 500~1,000 meters below the ground surface. The geological repository system consists of a disposal canister with packed spent fuel, buffer material, backfill material, and intact rock. The buffer is very important to assure the disposal safety of high-level radioactive waste. It can restrain the release of radionuclide and protect the canister from the inflow of groundwater. High temperature in a disposal canister is released into the surrounding buffer material, and thus the thermal transfer behavior of the buffer material is very important to analyze the entire disposal safety. Therefore, this paper presents a thermal conductivity prediction model for the Kyungju compacted bentonite buffer material which is the only bentonite produced in Korea. Thermal conductivity of Kyungju bentonite was measured using a hot wire method according to various water contents and dry densities. With 39 data obtained by the hot wire method, a regression model to predict the thermal conductivity of Kyungju bentonite was suggested.

Suggestion on Screening Concept of Radionuclides to be Considered for the Radiological Safety Assessment of the Domestic KBS-3 Type Geological Disposal Facility of High-level Radioactive Waste(HLW) (국내 KBS-3 방식 고준위방사성폐기물 심층처분시설 방사선학적 안전성 평가 대상 방사성핵종 목록 선정개념(안) 제언)

  • Sukhoon Kim;Donghyun Lee;Dong-Keuk Park
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.45-59
    • /
    • 2023
  • The transport calculation for a wide variety of radionuclides contained in high-level radioactive waste, especially spent nuclear fuel, is computationally difficult, and input data collection for this also take a considerable amount of time. Accordingly, considering limited resources, it is possible to reduce the calculation time while minimizing impact on accuracy by including only radionuclides important to calculation result through applying some criteria among potential radiation source terms that may release into environment. In this paper, therefore, we reviewed and analyzed the screening process performed to select radionuclides to be considered in the safety assessment for the KBS-3 type repository in Sweden and Finland. In both countries, it was confirmed that a list of radionuclides was selected by comprehensively considering screening criteria such as radioactivity inventory, half-life, radiotoxicity, risk quotient, and transport properties, and etc. A comparison of radionuclides included in the radiological safety assessment in both countries suggests that most of nuclides are considered in common, and a few nuclides considered only in one country are due to differences in decay chain treatment or spent fuel types. As of now, since most of information on the disposal facility in Korea has not been determined, it is necessary to comprehensively model release and transport of all radionuclides considered in Sweden and Finland when performing the radiological safety assessment. Based on these results, we derived the screening concept of selecting a list of radionuclides to be considered in the radiological safety assessment for the domestic KBS-3 type geological disposal facility, and this result is expected to be used as technical basis for confirming conformity with the safety objective. In a more detailed evaluation reflecting domestic characteristics in the future, it would be desirable to consider only radionuclides selected in accordance with the screening procedure. However, further research should be conducted to determine the quantitative limit for each criteria.

Status and Implications of Hydrogeochemical Characterization of Deep Groundwater for Deep Geological Disposal of High-Level Radioactive Wastes in Developed Countries (고준위 방사성 폐기물 지질처분을 위한 해외 선진국의 심부 지하수 환경 연구동향 분석 및 시사점 도출)

  • Jaehoon Choi;Soonyoung Yu;SunJu Park;Junghoon Park;Seong-Taek Yun
    • Economic and Environmental Geology
    • /
    • v.55 no.6
    • /
    • pp.737-760
    • /
    • 2022
  • For the geological disposal of high-level radioactive wastes (HLW), an understanding of deep subsurface environment is essential through geological, hydrogeological, geochemical, and geotechnical investigations. Although South Korea plans the geological disposal of HLW, only a few studies have been conducted for characterizing the geochemistry of deep subsurface environment. To guide the hydrogeochemical research for selecting suitable repository sites, this study overviewed the status and trends in hydrogeochemical characterization of deep groundwater for the deep geological disposal of HLW in developed countries. As a result of examining the selection process of geological disposal sites in 8 countries including USA, Canada, Finland, Sweden, France, Japan, Germany, and Switzerland, the following geochemical parameters were needed for the geochemical characterization of deep subsurface environment: major and minor elements and isotopes (e.g., 34S and 18O of SO42-, 13C and 14C of DIC, 2H and 18O of water) of both groundwater and pore water (in aquitard), fracture-filling minerals, organic materials, colloids, and oxidation-reduction indicators (e.g., Eh, Fe2+/Fe3+, H2S/SO42-, NH4+/NO3-). A suitable repository was selected based on the integrated interpretation of these geochemical data from deep subsurface. In South Korea, hydrochemical types and evolutionary patterns of deep groundwater were identified using artificial neural networks (e.g., Self-Organizing Map), and the impact of shallow groundwater mixing was evaluated based on multivariate statistics (e.g., M3 modeling). The relationship between fracture-filling minerals and groundwater chemistry also has been investigated through a reaction-path modeling. However, these previous studies in South Korea had been conducted without some important geochemical data including isotopes, oxidationreduction indicators and DOC, mainly due to the lack of available data. Therefore, a detailed geochemical investigation is required over the country to collect these hydrochemical data to select a geological disposal site based on scientific evidence.