• Title/Summary/Keyword: geological characterization

Search Result 86, Processing Time 0.026 seconds

Hydrogeological Properties of Geological Elements in Geological Model around KURT (KURT 지역에서 지질모델 요소에 대한 수리지질특성)

  • Park, Kyung Woo;Kim, Kyung Su;Koh, Yong Kwon;Choi, Jong Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.10 no.3
    • /
    • pp.199-208
    • /
    • 2012
  • To develop site characterization technologies for a radioactive waste disposal research in KAERI, the geological and hydrogeological investigations have been carried out since 1997. In 2006, the KURT (KAERI Underground Research Tunnel) was constructed to study a solute migration, a microbiology and an engineered barrier system as well as deeply to understand geological environments in in-situ condition. This study is performed as one of the site characterization works around KURT. Several investigations such as a lineament analysis, a borehole/tunnel survey, a geophyscial survey and logging in borehole, were used to construct the geological model. As a result, the geological model is constructed, which includes the lithological model and geo-structural model in this study. Moreover, from the results of the in-situ hydraulic tests, the hydrogeological properties of elements in geological model were evaluated.

Review of Site Characterization Methodology for Deep Geological Disposal of Radioactive Waste (방사성폐기물의 심층 처분을 위한 부지특성조사 방법론 해외 사례 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Jo, Yeonguk;Ji, Sung-Hoon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.15 no.3
    • /
    • pp.239-256
    • /
    • 2017
  • In the process of site selection for a radioactive waste disposal, site characterization must be carried out to obtain input parameters to assess the safety and feasibility of deep geological repository. In this paper, methodologies of site characterization for radioactive waste disposal in Korea were suggested based on foreign cases of site characterization. The IAEA recommends that site characterization for radioactive waste disposal should be performed through stepwise processes, in which the site characterization period is divided into preliminary and detailed stages, in sequence. This methodology was followed by several foreign countries for their geological disposal programs. General properties related to geological environments were obtained at the preliminary site characterization stage; more detailed site characteristics were investigated during the detailed site characterization stage. The results of investigation of geology, hydro-geology, geochemistry, rock mechanics, solute transport and thermal properties at a site have to be combined and constructed in the form of a site descriptive model. Based on this site descriptive model, the site characteristics can be evaluated to assess suitability of site for radioactive waste disposal. According to foreign site characterization cases, 7 or 8 years are expected to be needed for site characterization; however, the time required may increase if the no proper national strategy is provided.

Application of Seismic Inversion to the Gas Field Development

  • Jo, Nam-Dae;Yang, Su-Yeong;Kim, Jae-Woo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.05a
    • /
    • pp.47-56
    • /
    • 2009
  • Proper reservoir characterization is an integral part of formation evaluation, reserve estimation and planning of field development. Seismic inversion is a widely employed reservoir characterization tool that provides various rock properties of reservoir intervals. This study presents results of the inversion studies including Geostatistical Inversion carried out on the gas fields, offshore Myanmar. Higher resolution and multiple models can be produced by Geostatistical Inversion using input data such as pre-stack seismic data, well logs, petrophysical relationships and geological inferences for example reservoir shape and lateral extent. Detailed reservoir characterization was required for the development plan of gas fields, and the Geostatistical Inversion studies served as a basis for integrated geological modeling and development well planning.

  • PDF

Analysis of Geological Lineaments with Compensation of the Sun's Azimuth Angle (태양방위각 보상에 의한 지질학적 선구조 분석)

  • 이진걸
    • Proceedings of the IEEK Conference
    • /
    • 1998.10a
    • /
    • pp.947-950
    • /
    • 1998
  • Geological structures such as fault and fracture patterns provide important information about preliminary exploration of mineralized areas and geological characterization. We apply a filtering method taking the sun's azimuth angle into account to a shaded relief image derived from a digital elevation model (DEM), by which even linear edges extending parallel to the sun direction can be effectively extracted. Then, Generalized Hough tranform is applied to extract lineanments which correspond to fault and fracture patterns.

  • PDF

Petro-mineralogical and Solubility Characterization in Soluble Rocks (용해성 암석의 용식 진전에 대한 암석-광물학적 특성 연구)

  • 정의진;윤운상;여상진;김정환;이근병;노영욱
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.253-260
    • /
    • 2002
  • Chemical weathering processes related with mineralogical characters and ground water condition are very essential engineering problems in soluble rock masses. Detailed geological mapping were performed and 8 samples were collected from the 2 formations including various rock faces to deduce the possibility of the limestone cavity formation and their mechanism. Petrological descriptions and various petro-mineralogical experiments such as XRD analysis, clay mineral analysis, absorptivity test, impurity analysis were conducted to evaluate the cavity making processes. Laboratory solubility test for rock specimen were also carried out under the strong acid (pH=1) condition. From the experimental data and geological mapping data, it is found that the formation of limestone cavities in limestones are strongly related with geological structures such as beddings, cleavages and the contents of impurities rather than CaCO$_3$contents. In case of dolomites, rock textures, grain size, amounts and types of clay minerals as well as geological structures are major controlling factors of cavity forming processes

  • PDF

Synthetic Study on the Geological and Hydrogeological Model around KURT (KURT 주변 지역의 지질모델-수리지질모델 통합 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.9 no.1
    • /
    • pp.13-21
    • /
    • 2011
  • To characterize the site specific properties of a study area for high-level radioactive waste disposal research in KAERI, the several geological investigations such as surface geological surveys and borehole drillings were carried out since 1997. Especially, KURT (KAERI Underground Research Tunnel) was constructed to understand the further study of geological environments in 2006. As a result, the first geological model of a study area was constructed by using the results of geological investigation. The objective of this research is to construct a hydrogeological model around KURT area on the basis of the geological model. Hydrogeological data which were obtained from in-situ hydraulic tests in the 9 boreholes were estimated to accomplish the objective. And, the hydrogeological properties of the 4 geological elements in the geological model, which were the subsurface weathering zone, the log angle fracture zone, the fracture zones and the bedrock were suggested. The hydrogeological model suggested in this study will be used as input parameters to carry out the groundwater flow modeling as a next step of the site characterization around KURT area.

Engineering characterization of intermediate geomaterials - A review

  • T. Ashok Kumar;Ramanandan Saseendran;V. Sundaravel
    • Geomechanics and Engineering
    • /
    • v.33 no.5
    • /
    • pp.453-462
    • /
    • 2023
  • Intermediate Geomaterials (IGMs) are natural formation materials that exhibit the engineering behavior (strength and compressibility) between soils and rocks. The engineering behavior of such material is highly unpredictable as the IGMs are stiffer than soils and weaker/softer than rocks. Further, the characterization of such material needs exposure to both soil and rock mechanics. In most conventional designs of geotechnical structures, the engineering properties of the IGMs are either aligned with soils or rocks, and this assumption may end up either in an over-conservative design or under-conservative design. Hence, many researchers have attempted to evaluate its actual engineering properties through laboratory tests. However, the test results are partially reliable due to the poor core recovery of IGMs and the possible sample disturbance. Subsequently, in-situ tests have been used in recent years to evaluate the engineering properties of IGMs. However, the respective in-situ test finds its limitations while exploring IGMs with different geological formations at deeper depths with the constraints of sampling. Standard Penetration Test (SPT) is the strength-based index test that is often used to explore IGMs. Moreover, it was also observed that the coefficient of variation of the design parameters (which represents the uncertainties in the design parameters) of IGMs is relatively high, and also the studies on the probabilistic characterization of IGMs are limited compared with soils and rocks. With this perspective, the present article reviews the laboratory and in-situ tests used to characterize the IGMs and explores the shear strength variation based on their geological origin.

Study on the Geological Structure around KURT Using a Deep Borehole Investigation (장심도 시추공을 이용한 KURT 주변의 지질구조 연구)

  • Park, Kyung-Woo;Kim, Kyung-Su;Koh, Yong-Kwon;Choi, Jong-Won
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.8 no.4
    • /
    • pp.279-291
    • /
    • 2010
  • To characterize geological features in study area for high-level radioactive waste disposal research, KAERI (Korea Atomic Energy Research Institute) has been performing the several geological investigations such as geophysical surveys and borehole drilling since 1997. Especially, the KURT (KAERI Underground Research Tunnel) constructed to understand the deep geological environments in 2006. Recently, the deep borehole of 500 m depths was drilled to confirm and validate the geological model at the left research module of the KURT. The objective of this research was to identify the geological structures around KURT using the data obtained from the deep borehole investigation. To achieve the purpose, several geological investigations such as geophysical and borehole fracture surveys were carried out simultaneously. As a result, 7 fracture zones were identified in deep borehole located in the KURT. As one of important parts of site characterization on KURT area, the results will be used to revise the geological model of the study area.

Geophysical Investigation for Detecting a Bedrock and Geological Characterization in Natural Slope (자연사면에서 기반암 및 지질특성을 탐지하기 위한 지구물리 조사)

  • Park, Jong-Oh
    • The Journal of Engineering Geology
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2009
  • Geophysical surveys were conducted on an upper part of a natural slope located at Daejeon University. Electrical resistivity and seismic refraction measurements were carried out to obtain information on a weathered zone and internal structure at shallow depth, while AMT measurement a bed rock and geological structure at deep depth. With all the techniques applied, these results show a good correlation between electrical resistivity images and refraction velocity distributions for the characterization of a weathering and geological structure at depth. In particular, AMT survey seems to be the powerful tool for detecting a distribution of a bed rock with deep depth. The combined geophysical investigation produced a detailed image of a subsurface structure and improved well in the interpretation.