• Title/Summary/Keyword: geologic structures

Search Result 93, Processing Time 0.025 seconds

Fracture Characteristics in Geologic Media for Groundwater Flow : Review (암반의 지하수유동해석을 위한 지하매질의 열극특성 개념에 대한 고찰)

  • 배대석;송무영
    • The Journal of Engineering Geology
    • /
    • v.5 no.2
    • /
    • pp.201-213
    • /
    • 1995
  • Understanding of the fracture processes in rock mass for hydrogeology necessitates such information as fracture mechanics including genesis, propagation, termination, and the relation of fracture distribution to geologic structures and fracture modelling, etc. A current status of information on fracture for groundwater flow in rock mass, however, is very paucity except on a few special fields throughout the world. The desired and reasonable approach method in the evaluation on the groundwater flow in fractured rock mass must be based on the thorough understanding of fracture processes and a simplified model representing fracture properties which would be met to natural conditions for the interpretation and prediction.

  • PDF

Digital Image Processing of Side Scan Sonar for Underwater Man-made Structure (수중 인공구조물에 대한 사이드스캔소나 탐사자료의 영상처리)

  • Shin, Sung-Ryul;Lim, Min-Hyuk;Kim, Kwang-Eun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.33 no.2
    • /
    • pp.344-354
    • /
    • 2009
  • Side scan sonar using acoustic wave plays a very important role in the underwater, sea floor, and shallow marine geologic survey. In this study, we have acquired side scan sonar data for the underwater man-made structures, artificial reefs and fishing grounds, installed and distributed in the survey area. We applied digital image processing techniques to side scan sonar data in order to improve and enhance an image quality. We carried out digital image processing with various kinds of filtering in spatial domain and frequency domain. We tested filtering parameters such as kernel size, differential operator, and statistical value. We could easily estimate the conditions, distribution and environment of artificial structures through the interpretation of side scan sonar.

Geologic Structure of Euiseong Sub-basin from Spectrally Correlated Geopotential Field Anomalies (포텐셜필드의 스텍트럼대비법을 이용한 의성소분지의 지구조 연구)

  • 김원균
    • Economic and Environmental Geology
    • /
    • v.33 no.3
    • /
    • pp.217-228
    • /
    • 2000
  • We use spectral correlation method to analyze gravity and magnetic anomalies of Euiseong Sub-basin for distribution of rock facies and gelogic structures. The analysis reveals distinct polarity between gravity and magnetic anomaly correlation ; intermediate to mafic intrusives, extrusives, and the Tertiary basin shows positive gravity (+G) and positive magnetic (+M) correlation. Granitic gneiss and felsic volcanics negative gravity 9-G) and negative magnetic (-M) correlation. The Palgongsan granite, felsic to mafic extrusives and Mesozoic granites are characterized by -G and + M correlation. +G and -M correlations in the sedimentary formations are interpreted by uplift of pre-Cretaceous basement rocks . The + G and + M correlation characteristics in northeastern part of Euiseong Sub-basin including the Tertiary sedimentary basin result from the uplift of crustal materials. Major axes of spectrally correlated amomalies have mostly NW-SE or NE-SW directions. The former is due to the intrusives along strike-slip faults, and the latter which is observed in sedimentary formations is related to geological structures of basement associated new insight into the boundary between Euiseong and Milyang Sub-basin.

  • PDF

Study on Analysis of Geophysical Data for Complex Geological Condition (복잡한 지하구조 해석을 위한 물리탐사 자료 분석에 관한 연구)

  • Shin, Deuck-Hyun;Kim, Hoon;Oh, Seok-Hoon;Suh, Baek-soo
    • Journal of Industrial Technology
    • /
    • v.27 no.B
    • /
    • pp.115-119
    • /
    • 2007
  • Currently, geophysical method is applied for understanding the subsurface geologic structure economically and systematically, but there exists some limitations on recognizing complex subsurface structures precisely by a single geophysical method. In order to understand the complex subsurface structures, we applied various geophysical methods including seismic refraction survey, two-dimensional resistivity survey, seismic tomography survey, suspension-ps log, and understood distribution of low velocity, low resistivity range of resistivity survey and correlation of an intersecting point, velocity distribution of seismic tomography survey.

  • PDF

A Study on Interpretation of Gravity Data on Two-Dimensional Geologic Structures by Iterative Nonlinear Inverse (반복적 비선형역산에 의한 2차원 지질구조의 중력자료 해석 연구)

  • Ko, Chin-Surk;Yang, Seung-Jin
    • Economic and Environmental Geology
    • /
    • v.27 no.5
    • /
    • pp.479-489
    • /
    • 1994
  • In this paper, the iterative least-squares inversion method is used to determine shapes and density contrasts of 2-D structures from the gravity data. The 2-D structures are represented by their cross-sections of N-sided polygons with density contrasts which are constant or varying with depth. Gravity data are calculated by theoretical formulas for the above structure models. The data are considered as observed ones and used for inversions. The inversions are performed by the following processes: I) polygon's vertices and density contrast are initially assumed, 2) gravity are calculated for the assumed model and error between the true (observed) and calculated gravity are determined, 3) new vertices and density contrast are determined from the error by using the damped least-squares inversion method, and 4) final model is determined when the error is very small. Results of this study show that the shape and density contrast of each model are accurately determined when the density contrast is constant or vertical density gradient is known. In case where the density gradient is unknown, the inversion gives incorrect results. But the shape and density gradient of the model are determined when the surface density contrast is known.

  • PDF

Development of a Subsurface Exploration Analysis System Using a Clustering Technique on Bore-Hole Information (시추공 정보의 클러스터링 기법을 이용한 지반분석시스템의 개발)

  • 이규병;김유성;조우석;김영진
    • Spatial Information Research
    • /
    • v.8 no.2
    • /
    • pp.301-315
    • /
    • 2000
  • Every, year, a great amount of site investigation data is collected on site to obtain sufficient conditions. Investigation of subsurface conditions is prerequisite to the design and construction of structures and also provides information on ground properties such as geologic formation and types of soil. This data set, which portrays real representation of ground conditions over the existing geologic and soil maps, could be further utilized for analyzing the subsurface conditions. It is therefore necessary to develope a subsurface exploration analysis system which is able to extract the valuable information from the heterogeneous, non-normalized subsurface investigation data. This paper presents the overall design scheme and implementation on a subsurface exploration analysis system. The analysis system employs one of data set such as bore-hole data. The clustering technique employed in the developed system makes a large volume of bore-hole data into several groups in terms of ground formation and geographical vicinity. As a result of clustering, each group or cluster consists of bore-hole data with similar characteristics of subsurface and geographical vicinity. In addition, each clustered data is displayed on digital topographical map with different color so that the analysis of site investigation data could be performed in more sensible ways.

  • PDF

Development of Database System(DB/SLOPE) for Management of Cut Slope in Highway (고속도로 절토사면 관리를 위한 데이타베이스 프로그램 개발)

  • 유병옥;황영철
    • Tunnel and Underground Space
    • /
    • v.11 no.3
    • /
    • pp.206-216
    • /
    • 2001
  • Many failures in cut slopes occur during and following road construction. Failures are caused, in part, by a lack of understanding of the characteristics of rock mass including its geologic structure. The stability of rock slopes is closely related to factors that include the type of rock, development of geological structures, weathering, characteristics of rock, and the shape of the geologic features. Therefore, it is very important to consider these characteristics of rock mass in the evaluation of rock slope stability. In spite of investigation from many slope failures, these information data were not systematically stored and not efficiently utilized. In this study, a Database system named DB/SLOPE was developed using Oracle for systematic management of cut slopes. The developed database system can be used to estimate of slope stability and to predict of slope failure.

  • PDF

A Study on the Technique for Evaluating Geological Suitability about the Route of a Linear Civil Engineering Structure (선형토목구조물에 대한 지질학적 측면 노선의 적정성 평가기술)

  • Hwang, Hak-Soo;Moon, Sang-Ho;Kim, Yong-Il;An, Dong-Kwang;Ha, Sung-Ho;Song, Moo-Young
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.501-509
    • /
    • 2008
  • It is very important in designing civil engineering structures that the quantification of geological informations must be carried out in terms of importance. In this study, the geological informations are quantified and evaluated using analytic hierarchy process (AHP). A professional group was organized with 30 people in the field of civil engineering, transport, and geology. On the assumption that the civil engineering structure is linear such as highway or railroad, a survey of the group in terms of geological and hydro-geological elements has found that the hierarchy structure is composed of four levels. And fault structure is a primary factor which causes the stability of a linear civil engineering structure. The importance of geological items are arranged with fault (0.456), foliation/bedding plane(0.l65), lineation(0.144), ground water(0.124), and rock type(0.111).

High-resolution Seismic Study Using Weigh-drop at the Boundary of Pungam Basin (중력추를 이용한 풍암분지 경계 부근에서의 고해상도 반사파 탐사)

  • Kim, Hyoun Gyu;Kim, Ki Young
    • Economic and Environmental Geology
    • /
    • v.31 no.6
    • /
    • pp.519-526
    • /
    • 1998
  • A high-resolution seismic survey was conducted at the northeastern boundary of Pungam basin, one of the Cretaceous sedimentary basins in Korea. A 100 kg weight was used as an energy source and was found to be better than a sledge hammer in mapping deeper geologic structures. Several processing techniques such as f-k filtering, predictive deconvolution, and time-variant filtering are useful to enhance the signal-to-noise ratio by suppressing unwanted seismic energy. Four seismic units are recognized where many vertical faults are developed. The boundary fault between sedimentary rocks and Precambrian gneiss is identified along with a fracture zone of approximately 30 m wide. Bedding planes of the sedimentary rocks dipping westward are interpreted to be limbs of a syncline or volcanic flow. There faults and tilted bedding planes indicate that the basin had undergone significant tectonic deformation.

  • PDF

Study on Reducing Overbreak in Tunnel Excavation (터널에서의 여굴 저감 방안에 관한 연구)

  • Bae Sang-Hun;Kim Dae-Sang;Kim Mu-Il
    • Explosives and Blasting
    • /
    • v.23 no.1
    • /
    • pp.41-46
    • /
    • 2005
  • Overbreak is an inevitable during tunnel excavation. It significantly affects tunnel construction cost and safety The overbreak occurs due to incorrect expectations to the geologic structures, excessive charge or strength of explosives, etc. This paper introduces multi-hole drilling method to minimize the overbreak in tunnel excavation. Although the drilling cost of the method is more expensive than those of the existing other drilling method, it is expected at that cost will be reduced.