• Title/Summary/Keyword: geologic structures

Search Result 93, Processing Time 0.022 seconds

The Landform Developments in Relation with the Geologic Structures

  • Kim, Joo-Hwan
    • Journal of the Speleological Society of Korea
    • /
    • no.69
    • /
    • pp.9-20
    • /
    • 2005
  • Geologic Structures are reflected on the landform development. So lots of studies are emphasized on the individual processes and mechanism of the relationship between geologic structures and landforms. In this study, many cases are represented, such as : weathering, stream directions and structures expecially joints, gnamas, meander bending etc. New D-D Diagrams and photos are available to explain the relations of two factors. Landform developments are depend on geologic structures.

Comparison of the borehole and tomography data in subsidence area using 3D visualization (3D 가시화를 이용한 지반침하지역의 시추자료와 토모그래피 자료의 비교)

  • 안조범;윤왕중;김진회
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.231-236
    • /
    • 2002
  • The understanding of underground geologic structures is of great importance for the surface and subsurface constructions, prevention of natural hazards such as land-slides and subsidence, and many other areas. To get the information on the geologic conditions, many of investigations such as geologic survey, geophysical explorations, testings on the physical properties of rocks, drilling tests and logging, and groundwater surveys are usually conducted, and tremendous data are collected accordingly. In general, however, these huge amount of data are interpreted in the individual areas only. If these data are analyzed collectively, much more information on the geologic conditions can be obtained. In this study, 3D visualization of borehole logging data is attempted. Borehole logging data are obtained at the urban subsidence area. To compare the 3D logging data with other geologic and geophysical data such as resistivity tomography data, interface module was developed. The 3D visualization of logging data and the comparison with other data can be helpful for the understanding of underground geologic structures.

  • PDF

The Effects of an Instruction Using Geologic Planar Figures on High School Students' Ability of Spatial Visualization and Geologic Spatial Ability (지질 전개도를 활용한 수업이 고등학생의 공간 시각화 능력과 지질 공간 능력에 미치는 영향)

  • Park, Jaeyong;Lee, Kiyoung
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.280-299
    • /
    • 2015
  • The purpose of this study was to investigate the effects of an instruction using geologic planar figures on high school students' ability of spatial visualization and geologic spatial ability and also to explore its applicability as an instructional strategy through the investigation of students' perception about the instruction using mixed methodology. For this purpose, we developed 10 planar figures of geologic structures (2 horizontal layers, 2 vertical layers, 4 angular layers, 1 fault, and 1 fold), and tested students' spatial visualization ability and geologic spatial ability before and after the implementation in class. In addition, in order to investigate students' perception on the instruction, we conducted quantitative research using questionnaires comprised of the cognitive and the affective domain, and followed by focus group interview that was conducted to obtain deeper understanding of their perception. Findings revealed that the instruction using geologic planar figures was effective to enhance spatial visualization ability and geologic spatial ability. It was also helpful for students to enhance their ability to perceive the spatial configuration of the geologic structures as well as the ability to penetrate visually into the images of the structures. The results of the students' perception on the instruction showed that the students recognized the instruction using geologic planar figures as a strongly positive teaching method both in the cognitive and affective domain. We concluded that geologic planar figures could be used as an effective tool for the lesson of 'mapping and interpreting of geological map', and be highly applicable for the advanced class in high schools.

A Study on the Structural Deformations in the Sedimentary Layer Resulted from Magma Intrusion (마그마관입에 의한 상부퇴적층의 변형에 관한연구)

  • Min, Kyung Duck;Kim, Won Young
    • Economic and Environmental Geology
    • /
    • v.10 no.1
    • /
    • pp.37-48
    • /
    • 1977
  • The earth's crust is unceasingly undergoing deformations because of the forces acting upon it. The relationship between the tectonic forces and the resulting deformations are found from the states of stresses in the earth's crust induced by these forces. The study has been attempted to analyze the deformations of the overlying sedimentary layers, which are deformed by the magma intrusion along its lower boundary. The elastic model is constructed to analyze the geologic structures, by means of the theory of elasticity, and then the appropriate boundary conditions are given. The solution of the Airy stress function which satisfies the given boundary conditions is derived from the analytic method. The internal stress distributions of the deformed elastic model layer are portrayed by principal stress trajetories, and then the corresponding potential faults and joints systems are predicted from the Coulomb-Mohr failure criterion. The internal displacement distributions are shown by the calculated displacement components vectors, namely horizontal, vertical and net components. Results of the numerical calculations show the developments of some geologic structures as follows; (1) one set of shear joints and or two sets of shear joints which are oppisite directions, and one set of extension joints parallel to the ${\sigma}_1$ direction, (2) one set of high angle thrusts and normal faults, (3) symmetric fold; both limbs are dipping in opposite direction with low angle. The field work at the Wall-A San area, located near Jinju City, in southern Korea, had accomplished to compare the field structures with the predicted ones. The results of the comparison exhibits the developments of joint and fault systems satisfactorily consistent with each others. But the area does not show any type of folding, in spite of the intrusion of a granodiorite massif, this fact is one of the important features of the whole Kyungsang sedimentary basins of Mesozoic age distributed at the south-eastern parts of Korea. For this reason, it is thought that the magma intrusion had occurred with extremly low pressure. The geologic structures have been modified by the erosion and weathering throughout the geologic time, and the conditions of the sedimentary layers (width, thickness and radius of magma) are not the same as before, being intruded by the magma. To enlighten this, it is preferable to study these geologic structures with analyses of various types of rheological models.

  • PDF

Case Study on Rock Slope Failures Caused by Geologic Structures (지질구조 영향에 의한 암반비탈면 붕괴 사례 연구)

  • Park, Boo Seong;Cho, Hyun;Park, Dong In;Kim, Jun Ho;Choi, Jae Ho
    • The Journal of Engineering Geology
    • /
    • v.27 no.4
    • /
    • pp.417-427
    • /
    • 2017
  • This study aims to present cases of rock slope failures caused by geological structures. Status of slope failures, results of cause analysis and stabilizing methods are introduced, focusing primarily on rock slope failures caused by specific geologic structures, such as intersection of faults infilled with clay, foliation and fault shear zone by dike intrusion and deep-seated clayey layer along lithologic boundary. Detailed geological survey, geophysical exploration and boring survey were conducted for cause analysis. Stabilizing method to prevent further slope failures and to ensure long-term stability of slopes were established, considering characteristics of geological structures, types of failure and geological conditions.

Development of Learning Place for Geologic Field Survey around the Duta Mountain, Chungbuk, Korea (충북 괴산군 두타산 일대의 야외지질조사 학습장 개발)

  • Lee, Chang-Xin;Cheong, Sang-Won
    • Journal of the Korean earth science society
    • /
    • v.26 no.1
    • /
    • pp.41-57
    • /
    • 2005
  • The purpose of the study is to develop a educational data in order for students to perform geologic field survey effectively by themselves. A area around the Duta Mountain is selected. which is located at the southeastern part of Eumsung sedimentary basin because various rock types and geologic structures are well shown in this area and also it is convenient to reach there. Thirteen stops for observation are chosen m a route f3r exercising field geologic investigation. Data for field research are given and described in detail from each stop for observation. To do this, students make their own route map using general or digital geographic map and aerial photo is added to know relationship between large-scale structure and different rock types regionally. Moreover, it is designed to minimize conflict factors that may be experienced from the real field survey by showing outcrop photographs and polarizing photomicrographs of rut samples related to each stop and geologic structures. The attitude of students is investigated with the data of field geologic survey for students of an Earth Science class in the College of Education in Chungbuk National University. The results indicate that the educational data for geologic field survey brought positive changes that greatly help students perform field survey in definitive side, especially formation of absolute concepts on earth science.

A Study on the Relationship between Stream Patterns and Geologic Structures in South Korea (남한의 수계발달과 지질구조와의 관계에 관한 연구)

  • Kim, Kyu Han;Kim, Wan Sook
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.593-599
    • /
    • 1994
  • Drainage patterns were investigated to interpret the unknown geologic structure and geomorphic history in South Korea. Dendritic and rectangular patterns are most prominent ones developed in the granitic and sedimentary terrain. Drainage density ranges from 0.47 in the Nakdong river basin to 0.31 in the South Han river basin. Fine drainge texture is appeared in the Nakdong basin characterized by sedimentary beds of Mesozoic age, and coarse one are in the South Han river basin where Precambrian metamorphic rocks are dominated. Geological structures interpreted by stream pattern analysis are reasonally good agreement with the result by lineaments analysis and geological mapping.

  • PDF

Groundwater of bed rocks in South Korean Penninsula (한반도의 암반 지하수에 관한 연구)

  • 한정상
    • Water for future
    • /
    • v.14 no.4
    • /
    • pp.73-81
    • /
    • 1981
  • More than 650 numbers of water well ranging in depth from 100M to 200M were installed in South Korean Penninsula during the last decade for the purpose of industrial use and municipal water supply. Those data were compiled and synthesized by writer to determine their hydrogeologic occurences in accordance with their geologic and areal characteristics. Rocks yielding the deep seated ground water beared in the geologic primary and secondary porosities are classified into 6 groups according to their geologic, hydrogeologic, and topographic characteristics, that are: volcanic, sedimentary, meta-sediment and/or schist, andesitic, gneissic, and granitic rocks. The order of ground water productivity of the groups is as written above. Even granitic rocks including porphyries, granite, and intermediate and basic plutonic rocks is considered to be the most poorest ground water yielding group among 6, it's average yield form a single well with average drilling depth of 116M is about 225 cubic meters per day if it's drilling site is properly located. Generally speaking, seizable geologic structures such as fractured, sheared, and faulted zone at the flat surface and valley center yield almost 310% more of deep seated bet rock ground water in comparision with minor structures of joints, bedding planes, and so on that are occured at high land. 50 numbers of water well drilled at crystalline rocks were specially checked and measured it's ground water yie 1ds at each drilled depth to determine each interval's productivity while hammer drilling was going on. The results indicate that the specific capacity and yield of each water well at a depth below 70M to 80M was almost neglegible. It means that optimum well depth of crystalline rocks, except the area having seizable geologic structures, shall be not deeper than 80M.

  • PDF

Paleoseismological implications of liquefaction-induced structures caused by the 2017 Pohang Earthquake

  • Gihm, Yong Sik;Kim, Sung Won;Ko, Kyoungtae;Choi, Jin-Hyuck;Bae, Hankyung;Hong, Paul S.;Lee, Yuyoung;Lee, Hoil;Jin, Kwangmin;Choi, Sung-ja;Kim, Jin Cheul;Choi, Min Seok;Lee, Seung Ryeol
    • Geosciences Journal
    • /
    • v.22 no.6
    • /
    • pp.871-880
    • /
    • 2018
  • During and shortly after the 2017 Pohang Earthquake ($M_w$ 5.4), sand blows were observed around the epicenter for the first time since the beginning of instrumental seismic recording in South Korea. We carried out field surveys plus satellite and drone imagery analyses, resulting in observation of approximately 600 sand blows on Quaternary sediment cover in this area. Most were observed within 3 km of the epicenter, with the farthest being 15 km away. In order to investigate the ground's susceptibility to liquefaction, we conducted a trench study of a 30 m-long sand blow in a rice field 1 km from the earthquake epicenter. The physical characteristics of the liquified sediments (grain size, impermeable barriers, saturation, and low overburden pressure) closely matched the optimum ground conditions for liquefaction. Additionally, we found a series of soft sediment deformation structures (SSDSs) within the trench walls, such as load structures and water-escaped structures. The latter were vertically connected to sand blows on the surface, reflecting seismogenic liquefaction involving subsurface deformation during sand blow formation. This genetic linkage suggests that SSDS research would be useful for identifying prehistoric damage-inducing earthquakes ($M_w$ > 5.0) in South Korea because SSDSs have a lower formation threshold and higher preservational potential than geomorphic markers formed by surface ruptures. Thus, future combined studies of Quaternary surface faults and SSDSs are required to provide reliable paleoseismological information in Korea.

CLSM [Confocal Laser Scanning Microscope] Observation of the Surface Roughness of Pressurized Rock Samples During Freeze/Thaw Cycling

  • Kim, Hye-jin;Choi, Junghae;Chae, Byung-gon;Kim, Gyo-won
    • The Journal of Engineering Geology
    • /
    • v.25 no.2
    • /
    • pp.165-178
    • /
    • 2015
  • Physical and chemical weathering degrades rock, affecting its structural properties and thus the stability of stone buildings or other structures. Confocal laser scan microscopy (CLSM) is used here to observe temporal changes in the surface roughness of rock samples under simulated accelerated weathering. Samples were pressurized to 50, 55, or 70 MPa using a pressure frame, and subjected to freeze/thaw cycling controlled by a thermostat. The temperature was cycled from -20℃ to 40℃ and back. After each 20 cycles, CLSM was used to assess the change in surface roughness, and roughness factors were calculated to quantify the progression of the surface condition over time. Variations in cross-section line-roughness parameters and surface-roughness parameters were analyzed for specific parts of the sample surfaces at 5× and 50× magnification. The result reveals that the highest and lowest values of the roughness factors are changed according to elapsed time. Freezing/thawing at high pressure caused larger changes in the roughness factor than at low pressure.