• Title/Summary/Keyword: geologic spatial ability

Search Result 4, Processing Time 0.015 seconds

The Effects of an Instruction Using Geologic Planar Figures on High School Students' Ability of Spatial Visualization and Geologic Spatial Ability (지질 전개도를 활용한 수업이 고등학생의 공간 시각화 능력과 지질 공간 능력에 미치는 영향)

  • Park, Jaeyong;Lee, Kiyoung
    • Journal of the Korean earth science society
    • /
    • v.36 no.3
    • /
    • pp.280-299
    • /
    • 2015
  • The purpose of this study was to investigate the effects of an instruction using geologic planar figures on high school students' ability of spatial visualization and geologic spatial ability and also to explore its applicability as an instructional strategy through the investigation of students' perception about the instruction using mixed methodology. For this purpose, we developed 10 planar figures of geologic structures (2 horizontal layers, 2 vertical layers, 4 angular layers, 1 fault, and 1 fold), and tested students' spatial visualization ability and geologic spatial ability before and after the implementation in class. In addition, in order to investigate students' perception on the instruction, we conducted quantitative research using questionnaires comprised of the cognitive and the affective domain, and followed by focus group interview that was conducted to obtain deeper understanding of their perception. Findings revealed that the instruction using geologic planar figures was effective to enhance spatial visualization ability and geologic spatial ability. It was also helpful for students to enhance their ability to perceive the spatial configuration of the geologic structures as well as the ability to penetrate visually into the images of the structures. The results of the students' perception on the instruction showed that the students recognized the instruction using geologic planar figures as a strongly positive teaching method both in the cognitive and affective domain. We concluded that geologic planar figures could be used as an effective tool for the lesson of 'mapping and interpreting of geological map', and be highly applicable for the advanced class in high schools.

Development of MDA-based Subsurface Spatial Ontology Model for Semantic Sharing (시멘틱 공유를 위한 MDA기반 지하공간정보 온톨로지 모델 개발)

  • Lee, Sang-Hoon;Chang, Pyoung-Wuck
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.121-129
    • /
    • 2009
  • Today, it is difficult to re-use and share spatial information, because of the explosive growth of heterogeneous information and specific characters of spatial information accumulated by diverse local agency. A spatial analysis of subsurface spatial informa-tion, one of the National Spatial Data Infrastructure, needs related spatial information such as, topographical map, geologic map, underground facility map, etc. However, current methods using standard format or spatial datawarehouse cannot consider a se-mantic hetergenity. In this paper, the layered ontology model which consists of generic concept, measuremnt scale, spatial model, and subsurface spatial information has developed. Also, the current ontology building method pertained to human experts is a expensive and time-consuming process. We have developed the MDA-based metamodel(UML Profile) of ontology that can be a easy under-standing and flexiblity of environment change. The semantic quality of devleoped ontology model has evaluated by reasoning engine, Pellet. We expect to improve a semantic sharing, and strengthen capacities for developing GIS experts system using knowledge representation ability of ontology.

  • PDF

High School Students' Conceptions on Landscape Formation and Geological Time (고등학생들의 지형 형성과 지질학적 시간 개념)

  • Lee, Yongkyu;Han, Shin;Jeong, Jinwoo;Park, Taeyoon
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.8 no.3
    • /
    • pp.332-345
    • /
    • 2015
  • Earth science is the study to explore the planet in which we live. Among these earth science geology of the area it can be the most critical and important study. However, because of the size and scope is too broad temporal spatial eurona covered in geology is true that many students find difficult about the geology field. In this study, in conjunction with landscape formation of geologic time for the concept to be among the core areas of Geology examined the concept and recognize it as the destination for high school students. Is a test tool for the analysis was adapted for use by Jolley (2010) has developed LIFT (The Landscape Identification and Formation Test). Currently we fix the strip to match the country through a validity check of the curriculum. Results of the study were as follows: First, the ability to check the landscape and formation is expected to estimate the time and the liberal arts students was higher than the natural science students. The reason for this seems to be the influence of learning geographical subjects. Second, the concept of geological time was found to lack both natural science and liberal arts students. The reason is that the students in the previous process because it deals with the concept of geologic time from the top of Earth Science Education II seems to be because there was no chance of learning about geological time. Third, the results confirm the confidence of the students surveyed in the landscape formation time natural science students was higher than liberal arts students. The research measured gender boys higher than girls. Fourth, the students on the landscape and geological time was found to have a number of misconceptions. This appears to be due to the students to feel difficulty in thinking of the concept because the need to understand the abstract geologic time. Therefore, it is necessary just to hold misconceptions about the concept of geology students have through the study of the landscape and geological time.

Cross-Sectional Item Response Analysis of Geocognition Assessment for the Development of Plate Tectonics Learning Progressions: Rasch Model (판구조론의 학습발달과정 개발을 위한 지구적 인지과정 평가의 횡단적 문항 반응 분석: Rasch 모델)

  • Maeng, Seungho;Lee, Kiyoung
    • Journal of The Korean Association For Science Education
    • /
    • v.35 no.1
    • /
    • pp.37-52
    • /
    • 2015
  • In this study, assessment items to examine geocognition on plate tectonics were developed and applied to middle and high school students and college students. Conceptual constructs on plate tectonics are Earth interior structure, specific geomorphology, and geologic phenomena at each plate boundary. Construct for geocognition included temporal reasoning, spatial reasoning, retrospective reasoning, and system thinking. Pictorial data in each item were all obtained from GeoMapApp. Students' responses to the items were analyzed and measured cross-sectionally by Rasch model, which distinguishes persons' ability levels based on their scores for all items and compared them with item difficulty. By Rasch model analysis, Wright maps for middle and high school students and college students were obtained and compared with each other. Differential Item Functioning analysis was also implemented to compare students' item responses across school grades. The results showed: 1) Geocognition on plate tectonics was an assessable construct for middle and high school students in current science curriculum, 2) The most distinguished geocognition factor was spatial reasoning based on cross sectional analysis across school grades, 3) Geocognition on plate tectonics could be developed towards more sophisticated level through scaffolding of relevant instruction and earth science content knowledge, and 4) Geocognition was not a general reasoning separated from a task content but a content-specific reasoning related to the content of an assessment item. We proposed several suggestions for learning progressions for plate tectonics and national curriculum development based on the results of the study.