• Title/Summary/Keyword: geologic boundary

Search Result 56, Processing Time 0.025 seconds

Koreanized Analysis System Development for Groundwater Flow Interpretation (지하수유동해석을 위한 한국형 분석시스템의 개발)

  • Choi, Yun-Yeong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.3 s.10
    • /
    • pp.151-163
    • /
    • 2003
  • In this study, the algorithm of groundwater flow process was established for koreanized groundwater program development dealing with the geographic and geologic conditions of the aquifer have dynamic behaviour in groundwater flow system. All the input data settings of the 3-DFM model which is developed in this study are organized in Korean, and the model contains help function for each input data. Thus, it is designed to get detailed information about each input parameter when the mouse pointer is placed on the corresponding input parameter. This model also is designed to easily specify the geologic boundary condition for each stratum or initial head data in the work sheet. In addition, this model is designed to display boxes for input parameter writing for each analysis condition so that the setting for each parameter is not so complicated as existing MODFLOW is when steady and unsteady flow analysis are performed as well as the analysis for the characteristics of each stratum. Descriptions for input data are displayed on the right side of the window while the analysis results are displayed on the left side as well as the TXT file for this results is available to see. The model developed in this study is a numerical model using finite differential method, and the applicability of the model was examined by comparing and analyzing observed and simulated groundwater heads computed by the application of real recharge amount and the estimation of parameters. The 3-DFM model is applied in this study to Sehwa-ri, and Songdang-ri area, Jeju, Korea for analysis of groundwater flow system according to pumping, and obtained the results that the observed and computed groundwater head were almost in accordance with each other showing the range of 0.03 - 0.07 error percent. It is analyzed that the groundwater flow distributed evenly from Nopen-orum and Munseogi-orum to Wolang-bong, Yongnuni-orum, and Songja-bong through the computation of equipotentials and velocity vector using the analysis result of simulation which was performed before the pumping started in the study area. These analysis results show the accordance with MODFLOW's.

제주도 지하수자원의 최적 개발가능량 선정에 관한 수리지질학적 연구

  • 한정상;김창길;김남종;한규상
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1994.07a
    • /
    • pp.184-215
    • /
    • 1994
  • The Hydrogeologic data of 455 water wells comprising geologic and aquifer test were analyzed to determine hydrogeoloic characteristics of Cheju island. The groundwater of Cheju island is occurred in unconsolidated pyroclastic deposits interbedded in highly jointed basaltic and andesic rocks as high level, basal and parabasal types order unconfined condition. The average transmissivity and specific yield of the aquifer are at about 29,300m$^2$/day and 0.12 respectively. The total storage of groundwater is estimated about 44 billion cubic meters(m$^3$). Average annual precipitation is about 3390 million m$^3$ among which average recharge amount is estimated 1494 million m$^3$ equivalent 44.1% of annual precipitation with 638 million m$^3$ of runoff and 1256 million m$^3$ of evapotranspiration. Based on groundwater budget analysis, the sustainable yield is about 620 million m$^3$(41% of annual recharge)and rest of it is discharging into the sea. The geologic logs of recently drilled thermal water wens indicate that very low-permeable marine sediments(Sehwa-ri formation) composed of loosely cemented sandy sat derived from mainly volcanic ashes, at the 1st stage volcanic activity of the area was situated at the 120$\pm$68m below sea level. And also the other low-permeable sedimentary rock called Segipo-formation which is deemed younger than former marine sediment is occured at the area covering north-west and western part of Cheju at the $\pm$70m below sea level. If these impermeable beds are distributed as a basal formation of fresh water zone of Cheju, most of groundwater in Cheju will be para-basal type. These formations will be one of the most important hydrogeologic boundary and groundwater occurences in the area.

  • PDF

Variations of Clay Mineral Assemblage, Colour, and Microfossil Abundance in the Tertiary Sediments from the Pohang Area During Chemical Weathering (포항지역(浦項地域) 제(第)3기층(紀層) 퇴적암(堆積岩)중 화학적풍화작용(化學的風化作用)이 결토광물조성(結土鑛物組成), 화학조성(化學組成), 암색(岩色) 및 미화석(微化石) 산출빈도(産出頻度)에 미치는 영향)

  • Moon, Hi-Soo;Yun, Hyesu;Min, Kyung Duck;Lee, Hyun Koo;Lee, Jong Chun
    • Economic and Environmental Geology
    • /
    • v.23 no.2
    • /
    • pp.201-213
    • /
    • 1990
  • Mineralogy, chemistry, physical property, and fossil abundance have been studied for the samples collected from three weathering profiles, two from the Duho Formation and one from the Hagjeon Formation in the Tertiary sediments in the Pohang area. The mineralogy of the samples from the Duho Formation shows somewhat different from that of the Hagjeon Formation. Kaolinite is more abundant and shows higher crystallinity in samples from the Duho Formation than those in the Hagjeon Formation, but clay mineral assemblage in each weathering profile remain fairly constant with depth. This difference in mineral distribution seems to be inherited from original source materials. It indicates that little or not severe leaching has been taking place in these three weathering profiles. Weathering indicies indicate different degrees of susceptibility to chemical weathering in these two formations. The Duho Formation has a higher degree of susceptibility to weathering than that of the Hagjeon Formation which is mainly due to differences in clay mineral assemblages in both formations. A noticeble colour difference between oxidized and unoxidized zones in each profile can be easily recognized which is definetely due to different decomposition rate organic carbon by various oxidation state from surface to bottom of the profile. Weathering process have also intensively influenced microfossil preservation about up to 7-10 m in depth in the Duho Formation. Consequently, characteristics observed at weathering surface should be used as a subsidiary tool in setting geologic boundary or establishing formation. Great care must be taken to choose sampling site for microfossil study.

  • PDF

Thermoelastic Aspects of the San Andreas Faults under Very Low Strength (낮은 강도를 갖는 산 안드레아 단층의 열탄성 특성)

  • Park, Moo-Choon;Han, Uk
    • Journal of the Korean earth science society
    • /
    • v.21 no.3
    • /
    • pp.315-322
    • /
    • 2000
  • In this study, the data used for the models were a set of 56 geologic estimates of long-term fault slip rates. The hest models were those in which mantle drag was convergent on the Transverse Ranges in the San Andreas fault system, and faults had a low friction (${\mu}$= 0.3). It is clearly important to decide whether these cases of low strength are local anomalies or whether they are representative. Furthermore, it would be helpful to determine fault strength in as many tectonic settings as possible. Analysis of data was considered by unsuspected sources of pore pressure, or even to question the relevance of the friction law. To contribute to the solution of this problem, three attempts were tried to apply finite element method that would permit computational experiments with different hypothesized fault rheologies. The computed model has an assumed rheology and plate tectonic boundary conditions, and produces predictions of present surface velocity, strain rate, and stress. The results of model will be acceptably close to reality in its predictions of mean fault slip rates, stress directions and geodetic data. This study suggests some implications of the thermoelastic characteristics to interpret the relationship with very low strength of San Andreas fault system.

  • PDF

3-D Geological Structure Interpretation by the Integrated Analysis of Magnetotelluric and Gravity Model at Hwasan Caldera (자기지전류 및 중력 모델의 복합해석을 통한 화산칼데라 지역의 3차원 지질구조 해석)

  • Park, Gye-Soon;Lee, Chun-Ki;Yang, Jun-Mo;Lee, Heui-Soon;Kwon, Byung-Doo
    • Journal of the Korean earth science society
    • /
    • v.32 no.6
    • /
    • pp.548-559
    • /
    • 2011
  • 3-D Multi-geophysical surveys were carried out around the Hwasan caldera at the Euisung Sub-basin. To overcome the limitations of resolutions in previous studies, dense gravity data and magnetotelluric (MT) data were obtained and analyzed. In this study, the independent inversion models from gravity and MT data were integrated using correlation and classification approaches for 3-D imaging of the geologic structures. A Structure Index (SI) method was proposed and applied to the integration and classification analyses. This method consists of Type Angle (TA) and Type Intensity (TI) values, which are estimated by the spatial correlation and abnormality of the physical properties. The SI method allowed the classification analysis to be effectively performed. Major findings are as follows: 1) pyroclastic rocks around the central area of the Hwasan caldera with lower density and resistivity than those of neighboring regions extended to a depth of around 1 km, 2) intrusive igneous rocks with high resistivity and density were imaged around the ring fault boundary, and 3) a basement structure with low resistivity and high density, at a depth of 3-5 km, was inferred by the SI analysis.

Genesis and Hydrochemistry of $CO_2$-rich Springs from Kyungpook Province, Korea (경북지역 탄산수의 생성기원과 수리화학적 특성)

  • 정찬호
    • Economic and Environmental Geology
    • /
    • v.35 no.2
    • /
    • pp.121-136
    • /
    • 2002
  • The $CO_2$-rich springs in the Kyungpook Province has been found at 16 locations. Most of the $CO_2$-rich springs outflow along either fault zones or the geologic boundary between Mesozoic granites and their adjacent rocks. The $CO_2$-rich water samples show a high $CO_2$ concentration ( $P_{CO2}0.46 to 5.21 atm), weak acidic pHs, wide electrical conductivity values ranging from 422 to 2,280 $\mu\textrm{S}$/cm, and high re content. They are classified into the ca-HC $O_3$ type in chemical composition.$\delta$$^{18}$ O and $\delta$$^2$H data indicate that $CO_2$-rich water is meteoric origin. The $\delta$$^{13}$ C values (-1.5$\textperthousand$ to -6.1$\textperthousand$ PDB) suggest that dissolved $H_2$C $O_3$$^{0}$ C $O_3$- are mainly derived from a deep-seated $CO_2$ and carbonate minerals. The thermodynamic equilibrium state between $CO_2$-rich water and major minerals, and hydrochemical characteristics indicate that major source minerals determining the chemical composition of $CO_2$-rich water are carbonate minerals, plagioclase, K-feldspar and Fe-oxides. Under high $CO_2$ pressure and the weak acidic condition, most of the $CO_2$-rich water samples are thermodynamically in the dissolution state with respect to albite and carbonate minerals.

Interpretation on the subsurface velocity structure by seismic refraction survey in tunnel and slope (탄성파 굴절법 탐사를 이용한 지반 속도분포 해석-터널 및 절토 사면에의 적용 사례)

  • You Youngjune;Cho Chang Soo;Park Yong Soo;Yoo In Kol
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.48-64
    • /
    • 1999
  • For quantitative evaluation of geotechnical engineering properties such as rippability and diggability, clear interpretation on the subsurface velocity structures should be preceded by figuring out top soil, weathered and soft rock layers, shape of basement, fracture zones, geologic boundary and etc. from the seismic refraction data. It is very important to set up suitable field parameters, which are the configuration of profile and its length, spacings of geophones and sources and topographic conditions, for increasing field data quality Geophone spacing of 3 to 5m is recommended in the land slope area for house land development and 5 to 10m in the tunnel site. In refraction tomography technique, the number of source points should be more than a half of available channel number of instrument, which can make topographic effect ignorable. Compared with core logging data, it is shown that the velocity range of the soil is less than 700m/s, weathered rock 700${\~}$1,200m/s, soft rock 1,200${\~}$1,800m/s. And the upper limit of P-wave velocity for rippability is estimated 1,200 to 1,800m/s in land slope area of gneiss. In case of tunnel site, it is recommended in tunnel design and construction to consider that tunnel is in contact with soft rock layer where three lineaments intersecting each other are recognized from the results of the other survey.

  • PDF

A Case Study on Seismic Refraction Tomography Survey for Subsurface Structure Interpretation (지하구조 해석을 위한 탄성파 굴절법 토모그라피 탐사 사례연구)

  • 유영준;유인걸;송무영
    • The Journal of Engineering Geology
    • /
    • v.11 no.2
    • /
    • pp.163-174
    • /
    • 2001
  • For quantitative evaluation of geotechnical engineering properties such as rippability and diggability, clear interpretation on the subsUJiace velocity structures should be preceded by figuring out top soil, weathered and soft rock layers, shape of basement, fracture zones, geologic boundary and etC. from the seismic refraction data. It is very important to set up suitable field parameters, which are the configuration of profile and its length, spacings of geophones and sources and topographic conditions, for increasing field data Quality. Geophone spacing of 3 to 5m is reconunended in the land slope area of house land development site. In refraction tomography technique, the number of source points should be more than a Cluarter of available channel number of instrument and the subsurface structure interpretation can be decreased the artifact of inversion by topographic effect. Compared with core logging data, it is shown that the velocity range of the soil is less than 700m/s, weathered rock 700~1,200m/s, soft rock 1,200~1,800m/s on the velocity tomogram section. And the upper limit of P-wave velocity for rippability is estimated 1,200 to 1,800m/s in land slope area of gneiss.

  • PDF

Expected Segmentation of the Chugaryung Fault System Estimated by the Gravity Field Interpretation (추가령단층대의 중력장 데이터 해석)

  • Choi, Sungchan;Choi, Eun-Kyeong;Kim, Sung-Wook;Lee, Young-Cheol
    • Economic and Environmental Geology
    • /
    • v.54 no.6
    • /
    • pp.743-752
    • /
    • 2021
  • The three-dimensional distribution of the fault was evaluated using gravity field interpretation such as curvature analysis and Euler deconvolution in the Seoul-Gyeonggi region where the Chugaryeong fault zone was developed. In addition, earthquakes that occurred after 2000 and the location of faults were compared. In Bouguer anomaly of Chugaryeong faults, the Pocheon Fault is an approximately 100 km fault that is extended from the northern part of Gyeonggi Province to the west coast through the central part of Seoul. Considering the frequency of epicenters is high, there is a possibility of an active fault. The Wangsukcheon Fault is divided into the northeast and southwest parts of Seoul, but it shows that the fault is connected underground in the bouguer anomaly. The magnitude 3.0 earthquake that occurred in Siheung city in 2010 occurred in an anticipated fault (aF) that developed in the north-south direction. In the western region of the Dongducheon Fault (≒5,500 m), the density boundary of the rock mass is deeper than that in the eastern region (≒4,000 m), suggesting that the tectonic movements of the western and eastern regions of the Dongducheon Fault is different. The maximum depth of the fracture zone developed in the Dongducheon Fault is about 6,500 m, and it is the deepest in the research area. It is estimated that the fracture zone extends to a depth of about 6,000 m for the Pocheon Fault, about 5,000 m for the Wangsukcheon Fault, and about 6,000 m for the Gyeonggang Fault.

Hydrochemistry and Occurrences of Natural Radioactive Materials from Groundwater in Various Geological Environment (다양한 지질환경에서 지하수의 수리화학 및 자연방사성물질 산출특성)

  • Jeong, Chan Ho;Lee, Yu Jin;Lee, Yong Cheon;Kim, Moon Su;Kim, Hyun Koo;Kim, Tae Seong;Jo, Byung Uk;Choi, Hyeon Young
    • The Journal of Engineering Geology
    • /
    • v.26 no.4
    • /
    • pp.531-549
    • /
    • 2016
  • The purpose of this study is to analyze the relationship of hydrochemistry, geology, fault with occurrence of uranium and radon-222 from the groundwater in the Yeongdong area. In this study, 49 groundwater and 4 surface water samples collected in the study area were collected on two separate occasions. The surface radioactivities were measured at 40 points to know the relationship between the occurrence of uranium in groundwater and surface geology. The chemical composition of groundwater showed three types : $Ca-HCO_3$, $Na-HCO_3$ and $Ca-HCO_3(SO_4,\;NO_3)$. Two groundwater of 49 samples exceeded the maximum contaminant levels of uranium, $30{\mu}g/L$, proposed by the Ministry of Environment of Korea and 11 groundwater of 40 samples for Rn-222 concentrations exceeded the 148 Bq/L maximum contaminant level of US EPA. Most of unsuitable groundwater are located in the geological boundary related with the biotite gneiss and the surface radioactivities of rock samples showed no relationship with groundwater geochemical constituents. The strike-slip fault, Youngdong fault, is $N45^{\circ}E$ direction and the high concentrations of uranium in upper part of fault, consisted of granite and granitic gneiss are detected but in lower part, consisted of metamorphic sedimentary rock are not detected. It suggests that the natural radioactive concentrations are related with the geologic characteristics and the migration and diffusion of natural radioactive materials are affected by the fault.