• Title/Summary/Keyword: geoid

Search Result 136, Processing Time 0.025 seconds

Improved GRS80 Gravimetric Geoid in the South Korea Region (KGM93) (개선된 남한지역의 GRS80 중력지오이드 모델 (KGM93))

  • 조규전;이영진;조봉환
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.12 no.1
    • /
    • pp.61-68
    • /
    • 1994
  • Neglecting distant zones in the computation of geoidal heights using Stokes'formula give rise to some truncation errors. The GRS80 Korean Gravimetric geoid Model 1993(KGM93) of the South Korea region was implemented, in this paper, using a combination of satellite-derived GEM-T2 gravity and terrestrial gravity data. A spherical cap size of 30 degree is used on the integration and the truncation error is compensated to the free-air geoid. The results of this study show that the accuracy of the KGM93-C has one meter level.

  • PDF

A Study on the Comparison among Deflections of the Vertical Computed from Astronomical Coordinates and Geoid Models (천문경위도와 중력지로이드 모델로부터 구한 연직선 편차의 비교에 관한 연구)

  • 김용일;송창현;어양담;김형태
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.17 no.1
    • /
    • pp.87-95
    • /
    • 1999
  • In this study, we investigated the methods of computing deflection of the vertical and compared the results of deflections of the vertical computed from astronomical coordinates and GPS observations, and computed from PNU95, EGM96 geoid model. By comparing the results of the deflections of the vertical, we found out the followings; 1) The deflections of the vertical computed from astronomical coordinates and geoid models are similar to each other. 2) The difference between the deflections of the vertical computed from each geoid models was smaller than the difference of those computed from astronomic coordinates and geoid models. 3) The effects of distribution of the points on the results are less than those of the data used in the computation. If there exists reference data about the deflection of the vertical, it would be possible to evaluate the accuracy of the geoid model using this method.

  • PDF

Real-time Calculation of Geoid Applicable to Embedded Systems (내장형 시스템에 적용 가능한 지오이드의 실시간 결정)

  • Kim, Hyun-seok;Park, Chan-sik
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.5
    • /
    • pp.374-381
    • /
    • 2020
  • In order to improve the vertical position accuracy, the advantages of GPS and barometric altimeter are combined and used, but in order to fuse the two sensors, the geoid altitude must be compensated. In this paper, we proposed a technique that can calculate geoid altitude in real time even in low-cost embedded systems applied to drones or autonomous vehicles. Since the reference EGM08 is determined by a polynomial of the 2160th order, real-time calculation is impossible in the embedded system. Therefore, by introducing a linear interpolation technique, the amount of calculation was increased, and the storage space was saved by 75% by using the integer geoid height as a grid point. The accuracy of the proposed technique was evaluated through simulation, and it was confirmed that the accuracy of the maximum error is -1.215 m even in the region where the geoid change is rapid.

East Hartley Transform Technique as a Efficient Tools for Gravity Field Modelling (중력장 모델링을 위한 고속 Hartley 변환기법의 적용)

  • Yun, Hong-Sic
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.16 no.1
    • /
    • pp.17-26
    • /
    • 1998
  • This paper deals with gravimetric geoid determination by Fast Hartely transform (FHT) technique in and around the Korean peninsula. A number of data files were compiled for this work, containing now more than 69, 001 point gravity data on land and ocean areas. Especially, regression was applied to estimate gravity anomalies in the northern area of peninsula. For evaluating accuracy of geoid obtained, GPS/Leveling data of 49 stations were prepared. EGM96 global geopotential model to degree 360 was used in order to determine the long wavelength effect of geoid undulations. By applying the remove-restore technique geoid undulations were determined by combining a geopotential model, free-air gravity anomalies. Fast Hartley Transform technique is a suitable solution that uses the advanced spectral technique on the sphere. It was applied to predict geoid undulations by Stokes's integral. Accuracy of geoid undulations was evaluated by comparing with results derived from GPS/Leveling. Standard deviation of differences is about 33 cm.

  • PDF

Geoid Heights of Provinces in South KOREA by Earth Gravitational Models (지구중력장모형에 따른 국내 지역별 지오이드고)

  • Lee, Yong-Chang
    • The Journal of the Korea Contents Association
    • /
    • v.8 no.9
    • /
    • pp.274-280
    • /
    • 2008
  • The new high order Earth's gravity Model(EGM2008) are expected to improve the application about the Earth's global gravity field. The objectives of this research are to present characteristics on the geoid heights of provinces in South KOREA which calculated from the height anomalies by Earth Gravity Models. For this, seven EGMs (EGM2008<2,190>, EGM2008<360>, EGM96, EIGEN-GL04C, EIGEN-CG03C, EIGEN-GL04S1, and ITG-Grace02S) selected. Geoid heights of fifty BM check points by GPS/levelling are compared with those by NORI-05 model and seven EGMs. And also, geoid heights of 30"$\times$30" grid points in land(sixes blocks ; $1^{\circ}\times1^{\circ}$ sampled) and sea (four blocks ; $1^{\circ}\times1^{\circ}$ sampled) areas of South KOREA by EGM2008 are compared with those by NORI-05 and six EGMs. The results show that geoid heights obtained from EGM2008(2,190) of NGA displayed the nearest results to those by GPS/levelling.

The Update of Korean Geoid Model based on Newly Obtained Gravity Data (최신 중력 자료의 획득을 통한 우리나라 지오이드 모델 업데이트)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun;Keum, Young-Min;Moon, Ji-Yeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.29 no.1
    • /
    • pp.81-89
    • /
    • 2011
  • The previous land gravity data in Korea showed locally biased irregular distribution. Especially, this problem was more serious in the mountainous area where the data density was significantly low. The same problem appeared in GPS/Levelling data thus the precision of the geoid could not be improved. From 2008, new gravity and GPS/Levelling data has been collected by the unified control point and survey on the benchmark project which were funded by the national geographic information institute. The newly obtained data has much better distribution and precision so that it could be used for update precision of geoid model. In this study, the new precision geoid has been calculated based old and new gravity data and this model showed 5.29cm of precision compared to 927 points of GPS/Levelling data. And the degree of fit and precision of hybrid geoid has been calculated 2.99cm and 3.67cm. The new gravimetric geoid has been updated about 27% over whole country. And it showed 42% of precision update due to collection of new gravity data on the Kangwon/Kyeongsang area which showed quite low distribution. In 2010, about 4,000 points of gravity and 300 points of GPS/Levelling data has been obtained by unified control and survey on benchmark project. We expect that new data will contribute to updating geoid precision and veri tying precision more objectively.

Determination of the Optimal Parameters in Data Processing for the Precision Geoid Construction (정밀 지오이드 구축을 위한 자료처리의 최적 변수 결정)

  • Lee, Ji-Sun;Kwon, Jay-Hyoun
    • Spatial Information Research
    • /
    • v.17 no.3
    • /
    • pp.397-404
    • /
    • 2009
  • To solve the problems of distribution and quality on land gravity data, airborne gravity survey was performed in 2008 obtaining the airborne gravity data with accuracy of 1.56mGal. Since airborne gravity data is the obtained at the flight height, it is necessary to convert the airborne gravity data to the surface to combine various gravity data and compute precision geoid. In addition, Stokes' integral radius, Stokes' kernel and the radius of terrain effect computation should be optimally determined to calculate precision geoid. In this study, we made an effort to decide the optimal parameters based on the distribution and the characteristic of gravity data. Then, two geoid models were calculated using the selected parameters and the difference of geoid was calculated with mean of -16.95cm and the standard deviation of ${\pm}8.50cm$. We consider that this difference is due to the distribution and errors on the gravity data. For future work, the study on the effect of geoid with newly obtained land gravity data ship-borne gravity data and GPS/Leveling data should be conducted. Furthermore, the study on the downward continuation and terran effect calculation should be studied in detail for better precision geoid construction.

  • PDF

A Preliminary Study on the Correlation between GRACE Satellite Geoid Data Variation and Volcanic Magma Activity (GRACE 인공위성 지오이드 변화와 화산 마그마 활동 간의 상관관계에 대한 예비 연구)

  • Oh, Chang-Whan;Choi, Sung-Chan;Lee, Deok-Su;Kim, Myung-Deok;Park, Jong-Hyun;Seo, Min-Ho
    • Journal of the Korean earth science society
    • /
    • v.34 no.6
    • /
    • pp.550-560
    • /
    • 2013
  • In this study, the variations of geoid measured by GRACE satellite are investigated in the 20 volcanic areas erupted since 2005, and it is recognized that a detailed geological study is necessary in using geoid data for a research of the magmatic activities under the volcano. Therefore, the relationship between the regional geoid variation obtained by GRACE satellite and the change of magma activity, is studied in Japan's Shinmoedake volcano in the Kirishima volcanic complex whose eruption in 2011 was studied in detail geologically. Throughout this study the increase of geoid from 2002 in the Shinmoedake volcanic area is confirmed to be caused by the increase of gravity under the volcano, which is well matched with geological interpretation of the continuous intrusion of basaltic magma into magma chamber during several years before the 2011 eruption. The result indicates that information of the geoid variation measured by GRACE satellite is useful for monitoring the possibility of volcanic eruption although there is a need to more study to be able to confirm the possibility.

Development of Korean Geoid Model and Verification of its Precision (우리나라 지오이드 모델 구축 및 정밀도 검증)

  • Lee, Jisun;Kwon, Jay Hyoun;Baek, Kyeong Min;Moon, Jiyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.30 no.5
    • /
    • pp.493-500
    • /
    • 2012
  • The previous geoid model developed in early 2000s shows 14cm level of precision due to the problems on distribution, and quality of the land gravity and GPS/Leveling data. From 2007, the new land and airborne gravity data as well as GPS/Leveling data having high quality and regular distribution has been obtained. In 2011, a new gravimetric geoid model has been constructed with precision of 5.29cm which was improved about 27% comparing to the previous model. However, much more land gravity data has been collected at the control point, bench marks and triangulation points since 2010. Also, GPS/Leveling data having 10km spacing over whole country has been obtained through the project which is for the construction of new control points. In this study, new gravimetric geoid has been calculated based on the all available gravity data up to present. The geoid height shows the range from 18.05m to 32.70m over whole country and its precision is 5.76cm. The degree of fit and precision of hybrid geoid model are 3.60cm and 4.06cm, respectively. At the end, 3.35cm of the relative precision in 15km baseline has been calculated to confirm its practical usage. Especially, it has been founded that regional bias occurred at the Kangwon and coastal area due to problems on the leveling data. Also, some inland points show inconsistent large difference which needs to be verified by analyzing the unified control points results.