• Title/Summary/Keyword: geographical methods

Search Result 522, Processing Time 0.024 seconds

Methodology to Apply Low Spatial Resolution Optical Satellite Images for Large-scale Flood Mapping (대규모 홍수 매핑을 위한 저해상도 광학위성영상의 활용 방법)

  • Piao, Yanyan;Lee, Hwa-Seon;Kim, Kyung-Tak;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.5
    • /
    • pp.787-799
    • /
    • 2018
  • Accurate and effective mapping is critical step to monitor the spatial distribution and change of flood inundated area in large scale flood event. In this study, we try to suggest methods to use low spatial resolution satellite optical imagery for flood mapping, which has high temporal resolution to cover wide geographical area several times per a day. We selected the Sebou watershed flood in Morocco that was occurred in early 2010, in which several hundred $km^2$ area of the Gharb lowland plain was inundated. MODIS daily surface reflectance product was used to detect the flooded area. The study area showed several distinct spectral patterns within the flooded area, which included pure turbid water and turbid water with vegetation. The flooded area was extracted by thresholding on selected band reflectance and water-related spectral indices. Accuracy of these flooding detection methods were assessed by the reference map obtained from Landsat-5 TM image and qualitative interpretation of the flood map derived. Over 90% of accuracies were obtained for three methods except for the NDWI threshold. Two spectral bands of SWIR and red were essential to detect the flooded area and the simple thresholding on these bands was effective to detect the flooded area. NIR band did not play important role to detect the flooded area while it was useful to separate the water-vegetation mixed flooded classes from the purely water surface.

NIR-TECHNOLOGY FOR RATIONALE SOIL ANALYSIS WITH IMPLICATIONS FOR PRECISION AGRICULTURE

  • Stenberg, Bo
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1061-1061
    • /
    • 2001
  • The scope of precision agriculture is to reach the put up cultivation goals by adjusting inputs as precise as possible after what is required by the soil and crop potentials, on a high spatial resolution. Consequently, precision agriculture is also often called site specific agriculture. Regulation of field inputs “on the run” has been made possible by the GPS (Geographical Position System)-technology, which gives the farmer his exact real time positioning in the field. The general goal with precision agriculture is to apply inputs where they best fill their purpose. Thus, resources could be saved, and nutrient losses as well as the impact on the environment could be minimized without lowering total yields or putting product quality at risk. As already indicated the technology exists to regulate the input based on beforehand decisions. However, the real challenge is to provide a reliable basis for decision-making. To support high spatial resolution, extensive sampling and analysis is required for many soil and plant characteristics. The potential of the NIR-technology to provide rapid, low cost analyses with a minimum of sample preparation for a multitude of characteristics therefore constitutes a far to irresistible opportunity to be un-scrutinized. In our work we have concentrated on soil-analysis. The instrument we have used is a Bran Lubbe InfraAlyzer 500 (1300-2500 nm). Clay- and organic matter-contents are soil constituents with major implications for most properties and processes in the soil system. For these constituents we had a 3000-sample material provided. High performance models for the agricultural areas in Sweden have been constructed for clay-content, but a rather large reference material is required, probably due to the large variability of Swedish soils. By subdividing Sweden into six areas the total performance was improved. Unfortunately organic matter was not as easy to get at. Reliable models for larger areas could not be constructed. However, through keeping the mineral fraction of the soil at minimal variation good performance could be achieved locally. The influence of a highly variable mineral fraction is probably one of the reasons for the contradictory results found in the literature regarding organic matter content. Tentative studies have also been performed to elucidate the potential performance in contexts with direct operational implications: lime requirement and prediction of plant uptake of soil nitrogen. In both cases there is no definite reference method, but there are numerous indirect, or indicator, methods suggested. In our study, field experiments where used as references and NIR was compared with methods normally used in Sweden. The NIR-models performed equally or slightly better as the standard methods in both situations. However, whether this is good enough is open for evaluation.

  • PDF

A study on the measures to use Gunnam flood control reservoir through a reservoir simulation model (저수지 모의 모형을 통한 군남홍수조절지의 활용방안에 관한 연구)

  • Yang, Wonseok;Ahn, Jaehwang;Yi, Jaeeung
    • Journal of Korea Water Resources Association
    • /
    • v.50 no.6
    • /
    • pp.407-418
    • /
    • 2017
  • Due to geographical features of being close to DPRK (Democratic People's Republic of Korea), the Imjin River basin has difficulties in hydrological observation, and is vulnerable to unexpected flood occurrence. As a countermeasure, Gunnam Flood Control Reservoir construction was planned in 2005. Despite such a structural measure, damages by DPRK's illegal release continues to occur. Futhermore the Imjin River's flow has been decreased due to the effect of continuous drought in the Korean Peninsula since 2012 and DPRK's unilateral storage of water. A new operation method is derived for the Gunnam Flood Control Reservoir in order to cope with drought damages on the Imjin River basin and to ensure efficient response time upon flooding. The operation method maintaining Gunnam Flood Control Reservoir's water level by raising from EL.23.0 m to EL.31.0 m during the flood season for securing reservoir capacity enables to secure additional $14,000,000m^3$ water compared to the existing operation methods. The operation method to store inflow by controlling release to $250m^3/s$ in the early stage of flood has increased 2.66% on average in terms of detention effect of reservoir compared to the existing operation methods. The method enables to secure 19 hours to prepare flood compared to the existing methods.

Efficient Index Reconstruction Methods using a Partial Index in a Spatial Data Warehouse (공간 데이터 웨어하우스에서 부분 색인을 이용한 효율적인 색인 재구축 기법)

  • Kwak, Dong-Uk;Jeong, Young-Cheol;You, Byeong-Seob;Kim, Jae-Hong;Bae, Hae-Young
    • Journal of Korea Spatial Information System Society
    • /
    • v.7 no.3 s.15
    • /
    • pp.119-130
    • /
    • 2005
  • A spatial data warehouse is a system that stores geographical information as a subject oriented, integrated, time-variant, non-volatile collection for efficiently supporting decision. This system consists of a builder and a spatial data warehouse server. A spatial data warehouse server suspends user services, stores transferred data in the data repository and constructs index using stored data for short response time. Existing methods that construct index are bulk-insertion and index transfer methods. The Bulk-insertion method has high clustering cost for constructing index and searching cost. The Index transfer method has improper for the index reconstruction method of a spatial data warehouse where periodic source data are inserted. In this paper, the efficient index reconstruction method using a partial index in a spatial data warehouse is proposed. This method is an efficient reconstruction method that transfers a partial index and stores a partial index with expecting physical location. This method clusters a spatial data making it suitable to construct index and change treated clusters to a partial index and transfers pages that store a partial index. A spatial data warehouse server reserves sequent physical space of a disk and stores a partial index in the reserved space. Through inserting a partial index into constructed index in a spatial data warehouse server, searching, splitting, remodifing costs are reduced to the minimum.

  • PDF

The Status of Damage and Monitoring of Subterranean Termite (Reticulitermes spp.) (Blattodea: Rhinotermitidae) for Wooden Cultural Heritage in Korea (국내 목조문화재에 대한 지중 흰개미 피해 및 모니터링 현황)

  • Im, Ik-Gyun;Cha, Hyun-Seok;Kang, Won-Chul;Lee, Sang-Bin;Han, Gyu-Seong
    • Journal of Conservation Science
    • /
    • v.37 no.3
    • /
    • pp.191-208
    • /
    • 2021
  • In this study, the status of damage by subterranean termites and their management according to the region and type of domestic wooden cultural properties were identified. This was based on the survey reports of agencies conducting regular nationwide and regional monitoring of subterranean termites. In addition, using geographical information system (GIS) based on the survey contents, a map was constructed of termite infestation and its progress on 2,805 wooden cultural properties that were surveyed nationwide. Based on the map produced, a total of 486 cases of termite infestation were confirmed in wooden cultural properties during 2018-2019, of which 143 cases (approximately 29.4%) were confirmed to be owing to the invasion of termites in the ground and infestation of wood materials. A web platform and an application using a mapping application program interface were created to increase accessibility to the investigated damage status data. The methods employed by each institution for investigating and monitoring the invasion of termites in the ground included the use of detection dogs, visual observation, installation of wood specimens made of pine, and microwave equipment. However, it was confirmed that monitoring and survey methods were not applied to determine the territorial range of the subterranean termite colonies. Accordingly, the use of dyeing and mark-release-recapture methods were deemed necessary to understand the current status, such as calculating the scope of the target wooden cultural property, when monitoring subterranean termite colonies.

Classification of Convolvulaceae plants using Vis-NIR spectroscopy and machine learning (근적외선 분광법과 머신러닝을 이용한 메꽃과(Convolvulaceae) 식물의 분류)

  • Yong-Ho Lee;Soo-In Sohn;Sun-Hee Hong;Chang-Seok Kim;Chae-Sun Na;In-Soon Kim;Min-Sang Jang;Young-Ju Oh
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.4
    • /
    • pp.581-589
    • /
    • 2021
  • Using visible-near infrared(Vis-NIR) spectra combined with machine learning methods, the feasibility of quick and non-destructive classification of Convolvulaceae species was studied. The main aim of this study is to classify six Convolvulaceae species in the field in different geographical regions of South Korea using a handheld spectrometer. Spectra were taken at 1.5 nm intervals from the adaxial side of the leaves in the Vis-NIR spectral region between 400 and 1,075 nm. The obtained spectra were preprocessed with three different preprocessing methods to find the best preprocessing approach with the highest classification accuracy. Preprocessed spectra of the six Convolvulaceae sp. were provided as input for the machine learning analysis. After cross-validation, the classification accuracy of various combinations of preprocessing and modeling ranged between 43.4% and 98.6%. The combination of Savitzky-Golay and Support vector machine methods showed the highest classification accuracy of 98.6% for the discrimination of Convolvulaceae sp. The growth stage of the plants, different measuring locations, and the scanning position of leaves on the plant were some of the crucial factors that affected the outcomes in this investigation. We conclude that Vis-NIR spectroscopy, coupled with suitable preprocessing and machine learning approaches, can be used in the field to effectively discriminate Convolvulaceae sp. for effective weed monitoring and management.

The Effect of the Regional Factors on the Variation of Suicide Rates: Geographic Information System Analysis Approach (Geographic Information System 분석방법을 활용한 시·군·구 지역별 자살률에 영향을 미치는 요인 분석)

  • Park, Seong-Yong;Lee, Kwang-Soo
    • Health Policy and Management
    • /
    • v.24 no.2
    • /
    • pp.143-152
    • /
    • 2014
  • Background: Previous studies showed that the characteristics of population and regions were related to the suicide rates. This study purposed to analyze the relationships between regional factors and suicide rates with spatial analysis model. Methods: This is a cross sectional study based on the statistics of 2011 which was extracted from the 229 City Gun Gu administrative districts in Korea. Cause of death statistics on each district was used to produce the age-, sex-adjusted mortality rates resulting from suicide. Regional characteristics were measured by the number of doctors engaged in medical institutions per 1,000 population, divorced people's rate per 1,000 population, number of marriages per 1,000 population, and percent of welfare budget in general accounting. Statistical analysis was performed by using SAS ver. 9.3 and ArcGIS ver. 10.2 was used for geographically weighted regression (GWR). Results: In ordinary least square (OLS) regression, divorced people's rate per 1,000 population had a significant positive relationship with the standardized mortality rate per 100,000 population. Marriages per 1,000 population and the proportion of welfare budget in the general accounting had significant negative relationships with the mortality rates. Meanwhile, GWR provided that the directions of variable, divorced people's rate per 1,000 population, were varied depending on regions. The adjusted $R^2$ was improved from the 0.32 in OLS to the 0.46 in GWR. Conclusion: Results of GWR showed that regional factors had different effects on the suicide rates depending on locations. It suggested that policy interventions for reducing the suicide rate should consider the regional characteristics in obtaining policy objectives.

Status and Development of Geomatic s in China

  • Li, Li
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2002.04a
    • /
    • pp.17-24
    • /
    • 2002
  • Mechanization is the characteristic of the industrial era and computerization is the characteristic of the Information Era. Now we are facing on the transition from Industrial Era to information Era. Established the National Geo-spatial Data Infrastructures is the fundamental base for information society and is one part of the national basic economic development plan. From 1980's China started his successful transition from traditional methods to high-tech based mapping. China has laid out a high accuracy national GPS (global Positioning System) network, and completed the geographic information databases for scale of 1:1million and 1:250,000. Now it is working on the databases for scales of 1:50,000 and 1:10,000, the world highest level. The massive national programmed has been dubbed "Digital China," since it involves massive quantities of digitized geographical information. Simultaneity, GIS technology and the geo-spatial data have been used widely in electronic government affair, environmental protection, disaster control, ITS and etc. The users have realized the benefits more and more widely. Internet is an efficient way to distribute the geo-information, the State Bureau of Surveying and Mapping has give great effort to settle down the rules and standards to establish the clearing house. Some National Geo-standards have issued, and some of them are on the way. The GIS software is another important factor in the GIS industry. Chinese government working-out some good policy to supports the GIS software developer to have their own copyright. This paper is based on the above to introduce the status and development of Geomatics in China. in China.

  • PDF

On Statistical Inference of Stratified Population Mean with Bootstrap (층화모집단 평균에 대한 붓스트랩 추론)

  • Heo, Tae-Young;Lee, Doo-Ri;Cho, Joong-Jae
    • Communications for Statistical Applications and Methods
    • /
    • v.19 no.3
    • /
    • pp.405-414
    • /
    • 2012
  • In a stratified sample, the sampling frame is divided into non-overlapping groups or strata (e.g. geographical areas, age-groups, and genders). A sample is taken from each stratum, if this sample is a simple random sample it is referred to as stratified random sampling. In this paper, we study the bootstrap inference (including confidence interval) and test for a stratified population mean. We also introduce the bootstrap consistency based on limiting distribution related to the plug-in estimator of the population mean. We suggest three bootstrap confidence intervals such as standard bootstrap method, percentile bootstrap method and studentized bootstrap method. We also suggest a bootstrap test method computing the $ASL_{boot}$(Achieved Significance Level). The results of estimation are verified using simulation.

Stream Classification Based on the Ecological Characteristics for Effective Stream Management - In the Case of Nakdong River - (효율적인 하천관리를 위한 하천생태 특성을 고려한 유형 분류 - 낙동강수계를 대상으로 -)

  • Lee, Yoo-Kyoung;Lee, Sang-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.15 no.5
    • /
    • pp.103-114
    • /
    • 2012
  • The purpose of this research is classifying stream into different types depending on various factor from the perspective of stream corridor restoration and using it as basic data, which are used to consider efficient management and planning for the healthy stream according to the characteristic by types. In this study, 130 points of location of the Nakdong river basin which consist of various geographic factors have been chosen and hierarchical cluster analysis has been carried out in these points by using biological and physiochemical factors whose health can be considered to be predicted and evaluated. As a result of cluster analysis, there were three divided types. Type A whose biology and water quality are considered the best was the highest in forest area percentage so that it was classified into natural stream. Type B was classified into a rural region stream with a mixture of urban and agricultural region. Type C, with the most damaged water quality and biology health had the most urban region surface area and was named as urban region stream. Moreover, an overall restoration strategy according to characteristic by stream types was set. By the results of correlation analysis on factors, water quality showed a high correlation with biological properties and was affected by surrounding land usage. In evaluation of streams, it proves the need to consider not only other habitat's geographical and biological factors but also the water quality and land usage factors. There needs to be further research on stream ecosystem functionality factors and structural aspects by using a more objective and total evaluation result in selecting additional index and various other specific classification methods by stream types and its restoration strategies.