The critical point in this research is that the research on the phenomenon "teaching geography" should include how various elements consisting of the phenomenon are interrelated with each other in diverse angles, not deal with only teaching methods. This research focused on the relationships of the three components of teaching geography : contents of geography subject matter; learner; and scaffolding. Firstly, the characteristics of contents of geography subject matter were analyzed. Geographical knowledge was classified into four categories based on the way of perception. And then the selected geographic contents for this study were done didactic transposition into materials for geography education. These can be presented in a specific classification system from a context of geography education. Secondly, four categories of learning styles were divided by the way learners perceive and process information : Diverger; Assimilator; Converger; Accommodator. Each was connected with learner′s preferred contents of geography subject matter. The correlation between divergers and typical CulturalㆍHistorical Geography and Environmental Geography was high. So was between assimilators and typical Physical Geography and UrbanㆍEconomic Geography. Learners of Converger style tend to prefer GIS and Cartography. Finally, Regional Development and Regional Environmental Problems were highly correlated with accommodators.
International conference on construction engineering and project management
/
2024.07a
/
pp.479-486
/
2024
This study reviews the recently conducted case studies to explore the innovative integration of Artificial Intelligence (AI) and Machine Learning (ML) in the domain of building facility management and predictive maintenance. It systematically examines recent developments and applications of advanced computational methods, emphasizing their role in enhancing asset management accuracy, energy efficiency, and occupant comfort. The study investigates the implementation of various AI and ML techniques, such as regression methods, Artificial Neural Networks (ANNs), and deep learning models, demonstrating their utility in asset management. It also discusses the synergistic use of ML with domain-specific technologies such as Geographic Building Information Modeling (BIM), Information Systems (GIS), and Digital Twin (DT) technologies. Through a critical analysis of current trends and methodologies, the paper highlights the importance of algorithm selection based on data attributes and operational challenges in deploying sophisticated AI models. The findings underscore the transformative potential of AI and ML in facility management, offering insights into future research directions and the development of more effective, data-driven management strategies.
Journal of the Korean association of regional geographers
/
v.9
no.3
/
pp.395-409
/
2003
In this study the meaning and necessity for self-regulation in managing and organizing the national curriculum is researched in order to reflect the reality that the tide of regionalization appears apparently with globalism. Hwacheon is chosen and applied as an example region for selecting and forming a new learning content in geography education and teaching and learning that content. The regional geography should be learned in high schools according to the approach of regional textbooks being made and used now in primary and middle schools, and the contents of textbooks should be properly reorganized in accordance with the students' school ages rather than organized simply with enumerating geographic facts in a row. And the contents should be organized centering on the learners' daily living sphere. In addition, teaching-learning method should be taken into consideration according to the scale of the regions. Consequently, in this study small-scaled area was chosen as a learning content, laying stress on daily lives within the living zone, and therefore field work is considered as a learning method.
Journal of the Korean Association of Geographic Information Studies
/
v.7
no.1
/
pp.9-19
/
2004
The selection of comparative standard parcels should be objective and reasonable, which is an important task in the individual land price appraisal procedure. However, the current procedure is mainly done manually by government officials. Therefore, the efficiency and objectiveness of this selection procedure is not guaranteed and questionable. In this study, we first defined the problem by analyzing the current comparative standard land parcel selection method. In addition, we devised a decision tree-based method using a machine learning algorithm that is considered to be efficient and objective compared to the current selection procedure. Finally the proposed method is then applied to the study area for evaluating the appropriateness and accuracy.
Journal of the Korean Association of Geographic Information Studies
/
v.2
no.2
/
pp.69-78
/
1999
In this paper, a neural network approach to forecast Korean regional precipitation is presented. We first analyze the characteristics of the conventional models for time series prediction, and then propose a new model and its learning method for the precipitation forecast. The proposed model is a layered network in which the outputs of a layer are buffered within a given period time and then fed fully connected to the upper layer. This study adopted the dual connections between two layers for the model. The network behavior and learning algorithm for the model are also described. The dual connection structure plays the role of the bias of the ordinary Multi-Layer Perceptron(MLP), and reflects the relationships among the features effectively. From these advantageous features, the model provides the learning efficiency in comparison with the FIR network, which is the most popular model for time series prediction. We have applied the model to the monthly and seasonal forecast of precipitation. The precipitation data and SST(Sea Surface Temperature) data for several decades are used as the learning pattern for the neural network predictor. The experimental results have shown the validity of the proposed model.
Journal of the Korean Association of Geographic Information Studies
/
v.24
no.1
/
pp.92-111
/
2021
As fine dust negatively affects disease, industry and economy, the people are sensitive to fine dust. Therefore, if the occurrence of fine dust can be predicted, countermeasures can be prepared in advance, which can be helpful for life and economy. Fine dust is affected by the weather and the degree of concentration of fine dust emission sources. The industrial sector has the largest amount of fine dust emissions, and in industrial complexes, factories emit a lot of fine dust as fine dust emission sources. This study targets regions with old industrial complexes in local cities. The purpose of this study is to explore the factors that cause fine dust and develop a predictive model that can predict the occurrence of fine dust. weather data and fine dust data were used, and variables that influence the generation of fine dust were extracted through multiple regression analysis. Based on the results of multiple regression analysis, a model with high predictive power was extracted by learning with a machine learning regression learner model. The performance of the model was confirmed using test data. As a result, the models with high predictive power were linear regression model, Gaussian process regression model, and support vector machine. The proportion of training data and predictive power were not proportional. In addition, the average value of the difference between the predicted value and the measured value was not large, but when the measured value was high, the predictive power was decreased. The results of this study can be developed as a more systematic and precise fine dust prediction service by combining meteorological data and urban big data through local government data hubs. Lastly, it will be an opportunity to promote the development of smart industrial complexes.
Journal of the Korean Association of Geographic Information Studies
/
v.27
no.1
/
pp.115-127
/
2024
This research aimed to construct models with various structures based on the Transformer module and to perform land cover classification, thereby examining the applicability of the Transformer module. For the classification of land cover, the Unet model, which has a CNN structure, was selected as the base model, and a total of four deep learning models were constructed by combining both the encoder and decoder parts with the Transformer module. During the training process of the deep learning models, the training was repeated 10 times under the same conditions to evaluate the generalization performance. The evaluation of the classification accuracy of the deep learning models showed that the Model D, which utilized the Transformer module in both the encoder and decoder structures, achieved the highest overall accuracy with an average of approximately 89.4% and a Kappa coefficient average of about 73.2%. In terms of training time, models based on CNN were the most efficient. however, the use of Transformer-based models resulted in an average improvement of 0.5% in classification accuracy based on the Kappa coefficient. It is considered necessary to refine the model by considering various variables such as adjusting hyperparameters and image patch sizes during the integration process with CNN models. A common issue identified in all models during the land cover classification process was the difficulty in detecting small-scale objects. To improve this misclassification phenomenon, it is deemed necessary to explore the use of high-resolution input data and integrate multidimensional data that includes terrain and texture information.
The purposes of this study are to review research trends of applied geography field, to retrospect geographical works done by Korean geographers in applied geography, and to prospect the future of applied geography. We are in the period where societal problems such as energy, transportation, pollution, environment, health care, and many others, require careful consideration and need throughout strategies for solution. Most societal problems have some geographical dimensions. Because these problems are geographic in nature, there is an obvious implication that geography as a discipline has something to offer in their solutions. In fact, most geographic problems are best presented and analyzed through the applications of geographic theories, concepts and tools. Applied geography is a branch of general geography. It relies on the scientific methods and uses the principles and methods of pure geography. However applied geography is different in that it analyzes and evaluates real world action and planning and seeks to implement and manipulate environmental and spatial realities. Thus, geographic theories and other social theories that have geographic dimensions are fundamental to applied geography. Applied geography has a short history as theme in Korean geography. During the last two decades. Korea achieved remarkable economic growth. We have also encountered widening regional disparity, housing shortage of larger cities, transportation congestion, environmental pollution and many other problems. Applied geographers have tried to analyze and solve such spatial problems during the last 30 years. The research trend of Korean applied geography can be subdivided into 5 categories: (1) land use analysis and efficient utilization, (2) national physical development and planning. (3) regional development and regional planning, (4) tourism and location-allocation, transportation planning. Still the overconcentration of Seoul metropolitan region and unbalanced regional development are perceived to be the serious spatial problems which may induce more works to solve these problems. In Korea new emphasis has to be given to some professional training and experimental learning, including methodology, field techniques data management, statistical analysis, cartography, GIS, and other tools, as applicable and beneficial to problem solving in real world. The growth of applied geography depends on new insights and purposed solutions of future applied geographers in Korea. Applied geographers will contribute to the creation of future Korean geographies.
Journal of the Korean association of regional geographers
/
v.1
no.1
/
pp.103-116
/
1995
The purpose of this paper is to explore a brief review of trends in existing geographical research on music and to analyze music by the 5 themes of geography and to explore a variety of classroom techniques which examine song lyrics for their geographic content. The results of this paper are summarized as followed : Firstly, the trends in geographical research on music can be classified into five areas, the first is on spatial diffusion in music, the second on spatial diffusion in music, the third on regional division in music, the fourth on regional characteristics in music, the fifth on pedagogical tools in the teaching of geography. Secondly, music holds numerous possibilities for regional geographical study. The lyrics of music are littered with geographical term through which song writers impart image of culture, the distinct geographical nature of music lyrics gives rise to many geographical question, also, music lyrics gives place its special character. The results of analyses by the 5 themes of geography indicate that music are useful to learning of regional geography. The application of music to learning regional geography attracts much attentions. In the respect of importance of learning new regional geography, and in the respect of adapting globalization have to be focused on this subject.
Journal of the Korean Association of Geographic Information Studies
/
v.22
no.3
/
pp.82-98
/
2019
The importance of spatial information is rapidly rising. In particular, 3D spatial information construction and modeling for Real World Objects, such as smart cities and digital twins, has become an important core technology. The constructed 3D spatial information is used in various fields such as land management, landscape analysis, environment and welfare service. Three-dimensional modeling with image has the hig visibility and reality of objects by generating texturing. However, some texturing might have occlusion area inevitably generated due to physical deposits such as roadside trees, adjacent objects, vehicles, banners, etc. at the time of acquiring image Such occlusion area is a major cause of the deterioration of reality and accuracy of the constructed 3D modeling. Various studies have been conducted to solve the occlusion area. Recently the researches of deep learning algorithm have been conducted for detecting and resolving the occlusion area. For deep learning algorithm, sufficient training data is required, and the collected training data quality directly affects the performance and the result of the deep learning. Therefore, this study analyzed the ability of detecting the occlusion area of the image using various image quality to verify the performance and the result of deep learning according to the quality of the learning data. An image containing an object that causes occlusion is generated for each artificial and quantified image quality and applied to the implemented deep learning algorithm. The study found that the image quality for adjusting brightness was lower at 0.56 detection ratio for brighter images and that the image quality for pixel size and artificial noise control decreased rapidly from images adjusted from the main image to the middle level. In the F-measure performance evaluation method, the change in noise-controlled image resolution was the highest at 0.53 points. The ability to detect occlusion zones by image quality will be used as a valuable criterion for actual application of deep learning in the future. In the acquiring image, it is expected to contribute a lot to the practical application of deep learning by providing a certain level of image acquisition.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.