• Title/Summary/Keyword: geodesic element

Search Result 16, Processing Time 0.024 seconds

Optimal design of composite pressure vessel for fuel cell vehicle using genetic algorithm (유전자 알고리즘을 이용한 수소 연료 자동차용 복합재 압력용기의 최적설계)

  • Kang, Sang-Guk;Kim, Myung-Gon;Kim, Chun-Gon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.23-27
    • /
    • 2007
  • To store hydrogen with high pressure is one of key technologies in developing FCVs (fuel cell vehicles). Especially, metal lined composite structure, which is called Type 3, is expected to effectively stand highly pressurized hydrogen since it has high specific strength and stiffness as well as excellent storage ability. However, it has many difficulties to design Type 3 vessels because of their complex geometry, fabrication process variables, etc. In this study, therefore, optimal design of Type 3 vessels was performed in consideration of such actual circumstances using genetic algorithm. Additionally, detailed finite element analysis was followed for the optimal result.

  • PDF

Investigation of the vibration of lattice composite conical shells formed by geodesic helical ribs

  • Nezamoleslami, Reza;Khadem, Siamak E.
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.249-264
    • /
    • 2017
  • In this paper free linear vibration of lattice composite conical shells will be investigated. Lattice composite conical shell consists of composite helical ribs and thin outer skin. A smeared method is employed to obtain the variable coefficients of stiffness of conical shell. The ribs are modeled as a beam and in addition to the axial loads, endure shear loads and bending moments. Therefore, theoretical formulations are based on first-order shear deformation theory of shell. For verification of the obtained results, comparison is made with those available in open literature. Also, using FEM software the 3D finite element model of composite lattice conical shell is built and analyzed. Comparing results of analytical and numerical analyses show a good agreement between them. Some special cases as variation of geometric parameters of lattice part, effect of the boundary conditions and influence of the circumferential wave numbers on the natural frequencies of the conical shell are studied. It is concluded, when mass and the geometrical ratio of the composite lattice conical shell do not change, increment the semi vertex angle of cone leads to increase the natural frequencies. Moreover for shell thicknesses greater than a specific value, the presence of the lattice structure has not significant effect on the natural frequencies. The obtained results have novelty and can be used for further and future researches.

Structural Analysis and Strain Monitoring of the Filament Wound Composite Motor Case used in KSR-III Rocket (KSR-III 삼단 복합재 연소관의 구조 해석 및 변형률 측정)

  • 박재성;김철웅;조인현;오승협;홍창선;김천곤
    • Composites Research
    • /
    • v.14 no.6
    • /
    • pp.24-31
    • /
    • 2001
  • Filament wound structures such as pressure tanks, pipes and motor cases of rockets are widely used in the aerospace application. The determination of a proper winding angle and thickness is very important to decrease manufacturing difficulties and to increase structural efficiency. In this study, possible winding angles considering the slippage between a fiber and a mandrel surface are calculated using the semi-geodesic path equation. In addition, finite element analysis using ABAcUS are performed to predict the behavior of filament wound structures considering continuous change of winding angle along the dome part. The water-pressuring tests of 3rd stage motor case are performed to verify the analysis procedure. The strain gages are attached on the surface in the fiber direction. Progressive failure analysis is performed to predict the burst pressure and the weakest region of the motor case. The effect of reinforcement is also studied to increase its performance.

  • PDF

Topology and geometry optimization of different types of domes using ECBO

  • Kaveh, A.;Rezaei, M.
    • Advances in Computational Design
    • /
    • v.1 no.1
    • /
    • pp.1-25
    • /
    • 2016
  • Domes are architectural and elegant structures which cover a vast area with no interrupting columns in the middle, and with suitable shapes can be also economical. Domes are built in a wide variety of forms and specialized terms are available to describe them. According to their form, domes are given special names such as network, lamella, Schwedler, ribbed, and geodesic domes. In this paper, an optimum topology design algorithm is performed using the enhanced colliding bodies optimization (ECBO) method. The network, lamella, ribbed and Schwedler domes are studied to determine the optimum number of rings, the optimum height of crown and tubular sections of these domes. The minimum volume of each dome is taken as the objective function. A simple procedure is defined to determine the dome structures configurations. This procedure includes calculating the joint coordinates and element constructions. The design constraints are implemented according to the provision of LRFD-AISC (Load and Resistance Factor Design-American Institute of Steel Constitution). The wind loading act on domes according to ASCE 7-05 (American Society of Civil Engineers). This paper will explore the efficiency of various type of domes and compare them at the first stage to investigate the performance of these domes under different kind of loading. At the second stage the wind load on optimum design of domes are investigated for Schwedler dome. Optimization process is performed via ECBO algorithm to demonstrate the effectiveness and robustness of the ECBO in creating optimal design for domes.

ON CONJUGATE POINTS OF THE GROUP H(2, 1)

  • Jang, Chang-Rim;Park, Keun;Lee, Tae-Hoon
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.249-257
    • /
    • 2006
  • Let n be a 2-step nilpotent Lie algebra which has an inner product <,> and has an orthogonal decomposition $n=\delta{\oplus}\varsigma$ for its center $\delta$ and the orthogonal complement $\varsigma\;of\;\delta$. Then Each element Z of $\delta$ defines a skew symmetric linear map $J_Z:\varsigma{\rightarrow}\varsigma$ given by $=$ for all $X,\;Y{\in}\varsigma$. Let $\gamma$ be a unit speed geodesic in a 2-step nilpotent Lie group H(2, 1) with its Lie algebra n(2, 1) and let its initial velocity ${\gamma}$(0) be given by ${\gamma}(0)=Z_0+X_0{\in}\delta{\oplus}\varsigma=n(2,\;1)$ with its center component $Z_0$ nonzero. Then we showed that $\gamma(0)$ is conjugate to $\gamma(\frac{2n{\pi}}{\theta})$, where n is a nonzero intger and $-{\theta}^2$ is a nonzero eigenvalue of $J^2_{Z_0}$, along $\gamma$ if and only if either $X_0$ is an eigenvector of $J^2_{Z_0}$ or $adX_0:\varsigma{\rightarrow}\delta$ is not surjective.

  • PDF

Influence of fiber paths on buckling load of tailored conical shells

  • Naderi, Ali-Asghar;Rahimi, Gholam-Hossein;Arefi, Mohammad
    • Steel and Composite Structures
    • /
    • v.16 no.4
    • /
    • pp.375-387
    • /
    • 2014
  • The purpose of this paper is to propose a method for evaluation of varying stiffness coefficients of tailored conical shells (TCS). Furthermore, a comparison between buckling loads of these shells under axial load with the different fiber path is performed. A circular truncated conical shell subjected to axial compression is taken into account. Three different theoretical path containing geodesic path, constant curvature path and constant angle path has been considered to describe the angle variation along the cone length, along cone generator of a conical shell are offered. In the TCS with the arbitrary fiber path, the thickness and the ply orientation are assumed to be functions of the shell coordinates and influencing stiffness coefficients of the structure. The stiffness coefficients and the buckling loads of shells are calculated basing on classical shells theory (CST) and using finite-element analysis (FEA) software. The obtained results for TCS with arbitrary fiber path, thickness and ply orientation are derived as functions of shell longitudinal coordinate and influencing stiffness coefficients of structures. Furthermore, the buckling loads based on fiber path and ply orientation at the start of tailored fiber get to be different. The extent of difference for tailored fiber with start angle lower than 20 degrees is not significant. The results in this paper show that using tailored fiber placement could be applied for producing conical shells in order to have greater buckling strengths and lower weight. This work demonstrates the use of fiber path definitions for calculated stiffness coefficients and buckling loads of conical shells.