• Title/Summary/Keyword: geochemical conditions

Search Result 110, Processing Time 0.018 seconds

Characteristics of the Inorganic Element Contents or the Korean Ginsengs from Various Soils of Keumsan (금산 지역 토양 차이에 의한 인삼 중 무기 원소의 함량 변화)

  • Song, Suck-Hwan;Min, Ell-Sik
    • Journal of Ginseng Research
    • /
    • v.33 no.1
    • /
    • pp.13-25
    • /
    • 2009
  • Geochemical relationships between ginsengs and soils from three representative soil types, shale, phyllite and granite regions, from Keumsan were examined. High elements ere shown at the granite and shale areas of the weathered soils, the phyllite areas of he cultivated soils and the shale areas of the host rocks. T1 was enriched in ginsengs grown in the shale areas, Cs and B in the phyllite areas, and Be and Cd in the granite areas. Positive correlations were dominated by the shale areas. These relationships can be explained for mineral characteristics within the soils, and their behaviors related to the physio-chemical conditions. High elements were shown in the 2 year ginsengs of the hale areas, and 4 year ginsengs of the phyllite and granite areas in comparisons with ginsengs of the different ages from the same areas. These differences can be explained with ages of the ginsengs, solubilities of the minerals and physio-chemical differences within soils. The content differences of high elements such as Cs, T1 and Be were found between soils and ginsengs. Overall, these results suggest that components of ginsengs grown in the granite areas are chemically similar to the soils.

Petrological and mineralogical characteristics of the rocks constituting the Sungryemun (South Gate) (숭례문 구성 석재의 암석학적 및 광물학적 특징)

  • 박찬수;이상헌
    • The Journal of the Petrological Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.196-206
    • /
    • 2003
  • The geochemical and mineralogical investigation on the rocks and repair material comprising of the Sungryemun (The 1st National Treasure) has been made. Rock of the Sungryemun is highly weathered coarse-grained calc-alkali granite. The rock consists mainly of quartz, perthite, plagioclase and biotite with small amounts of orthoclase, muscovite, chlorite and sericite, which are major weathering products from perthite. For obtaining informations about degree of weathering, mineral composition of the original rock calculated by CIPW norm and weathered rock composition determined by XRD quantitative analysis were plotted on a ternary diagram of quartz-potash feldspar-plagioclase. Original rock compositions are plotted on the central granite area. whereas weathered ones are plotted on the granite area close to quartz. The result means that quartz is more abundant in weathered rock, due to selective chemical weathering of potash feldspar and plagioclase over quartz. On the whole, surface of the rocks were black-coated, exfoliated and highly fractured due to the physical and chemical weathering and heavy load has made the cracks in the lower parts of the stone construction. Also, cement and nails, which was used as repair material, during the repair work in the early 1960's, has accelerated the weathering process. Furthermore, weathered conditions of repair materials are very severe. Therefore, it is very urgent to establish of the conservation plan for the Sungryemun.

Palaeodepositional Environment of the Cretaceous Hampyeong Basin, Southwestern Korea (한반도 남서부 중생대 백악기 함평퇴적분지의 고퇴적환경연구)

  • You, Hoan-Su;Kenrick, Paul;Koh, Yeong-Koo;Yun, Seok-Tai;Kim, Joo-Yong;Kim, Hai-Gyoung;Chung, Chul-Hwan;Ryu, Sang-Ock
    • Journal of the Korean earth science society
    • /
    • v.21 no.6
    • /
    • pp.683-694
    • /
    • 2000
  • Abstrace: The palaeodepositional environment and age of the Cretaceous Hampyeong Basin (southwestern Korea) are reassessed based on new geochemical, lithological, sedimentological, and palaeobotanical data. Results indicate that the Hampyeong Basin was a tectonically active basin comprising predominantly fluvial and lacustrine sediments. Four distinctive facies types have been identified (acidic tuff, black shales/sandstones, red beds, intermediate tuff with tuffaceous conglomerate) and these reflect periods of significant environmental change within the basin and its neighbouring terrains. Volcanism driven by tectonic events provides a source for much of the sediment. The sedimentary sequences compare well with those in the neighbouring Haenam Basin. Sediments of volcanic origin are similar to those of the Neungju Formation of the Yuchon Group. The widespread occurrence of black shales is indicative of extended periods of deposition under anoxic conditions. Measurements of total organic carbon show that the values for the black shales (0.81% to 1.75%) are the average for petroleum source shales. Fossil plants occurred in the black shales and sandstones. The occurrence of platanoid leaves places these sediments in Oishi's angiosperm series, which is consistent with an Aptian/Albian or younger age.

  • PDF

Geochemical Evolution of CO2-rich Groundwater in the Jungwon Area (중원 지역 탄산수의 지구화학적 진화)

  • 고용권
    • Economic and Environmental Geology
    • /
    • v.32 no.5
    • /
    • pp.469-483
    • /
    • 1999
  • Two different types of deep groundwaters occur together in the Jungwon area: $CO_2$-rich water and alkali water. Each water shows distrinct hydrogeochemical and environmental isotopic characteristics. The $CO_2$-rich waters are characterized by lower pH(6.0~6.4), higher Eh (25~85mV) and higher TDS content (up to 3,300 mg/l), whereas the alkali type waters have higher pH (9.1~9.5), lower Eh (-136~-128mV) and lower TDS content (168~254 mg/l). The CO2-rich waters ($Pco_2$=up to 1atm) were probably evolved by the local supply of deep $CO_2$ during the deep circulation, resulting in enhanced dissolution of surrounding rocks to yield high concentrations of $Ca^{2+}, Na^+, Mg^{2+}, K^+\; and \;HCO_3\;^-$ under low pH conditions. On the other hand, the alkali type waters ($Pco_2$=about 10-4.6 atm) were evolved through lesser degrees of simple wate/rock (granite) interaction under the limited suppy of $CO_2$. The alkali waters are relatively enriched in F- (up to 14mg/l), whereas the F- concentration of$CO_2$-rich water is lower (2.2~4.8 mg/l) due to the buffering by precipitation of fluorite. The oxygen-hydrogen isotopes and tritium data indicate that compared to shaltion ($\delta$18O=-9.5~-7.8$\textperthousand$),two different types fo deep groudwaters (<1.0TU)were both derived from pre-thermonuclear (more than 40 years old) meteoric waters with lighter O-H isotopic composition ($\delta$18O=-9.5~-7.8$\textperthousand$) and have evolved through prolonged water/rock interaction. The $CO_2$-rich waters also show some degrees of isotopic re-equilibration with $CO_2$ gas. The $\delta^{34}S$ values of dissolved sulfates (+24.2~+27.6$\textperthousand$) in the $CO_2$-rich waters suggest the reduction of sulfate by organic activity at depths. The carbon isotope data show that dissolved carbon in the $CO_2$-rich waters were possibly derived either from dissolution of calcite or from deep $CO_2$ gas. However, strontium isotope data indicate Ca in the $CO_2$-rich waters were derived mainly from plagioclase in granite, not from hydrothermal calcites.

  • PDF

The Distribution Characteristics and Contamination of Heavy Metals in Soil from Dalcheon Mine (달천광산 토양 내 중금속의 존재형태 및 오염도)

  • Suh, Ji-Won;Yoon, Hye-On;Jeong, Chan-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.1
    • /
    • pp.57-65
    • /
    • 2008
  • The geochemical partitioning of arsenic in contaminated soils from a of wet land and tailing of the abandoned mine is examined. Chemical analysis and sequential extraction method by ultrasound-sonication extraction are applied to investigate the mobility and chemical existence conditions of arsenic as well as heavy metals. The results of this study showed that heavy metals concentration of tailings showed as a following order: Fe > As > Cu > Pb > Cr. The highest metal concentration was recognized in samples less than $63\;{\mu}m$ fraction in their particle sizes. Exchangeable and carbonate fractions in soil samples showed following Cu > As > Pb > Fe > Cr for tailings, and Fe > Pb > Cu > As > Cr for reservoir soils, respectively. Arsenic was bound as exchangeable fraction in tailings and its concentration appeared higher than those of the other metals. Thus, As can be easily dispersed into soil and water environments. The obtained results can be used to design soil remediation plan in the study area and require further detailed study to investigate severe environmental pollution of surface water as well as rivers with respect to heavy metals in terms of speciation analysis of toxic elements such as As and Cr.

Material Characteristics and Making Techniques of the Goryeo Roof Tiles from Oegol Site of Tangjeong Area in Asan, Korea (아산 탕정지구 외골유적 출토 고려 기와의 재료과학적 특성과 제작기법)

  • Kim, Ji-Young;Lee, Chan-Hee;Cho, Seon-Yeong;Gim, Ran-Hui;Lee, Ho-Hyeong
    • Journal of Conservation Science
    • /
    • v.25 no.3
    • /
    • pp.299-316
    • /
    • 2009
  • The Goryeo roof tiles from the Oegol site in Tangjeong, Asan are classified into three groups in color such as gray, red yellow and gray-yellow groups, respectively. While each group of tiles shows characteristic specific gravity, absorption ratio, LOI and vitrification degree, mineral content and distribution, and chemical composition are generally homogeneous among all groups of roof tiles. Also, all roof tiles and soils from the site show similar geochemical behavior of elements and clay-mineralization degree. This indicates that the soil from the site is probable to be a raw material of the roof tiles. Firing temperature of the roof tiles is estimated as 950 to $1,050^{\circ}C$ for the gray group, 800 to $900^{\circ}C$ for the red yellow group, and 900 to $950^{\circ}C$ for the gray-yellow group. In conclusion, roof tiles from the Oegol site is interpreted to be made of local clay without additive minerals, applying various firing conditions and standardized purifying process of raw clay materials.

  • PDF

A Study on the Stability of the Ca-Bentonite Colloids Using a Dynamic Light Scattering Method (동적광산란 방법을 이용한 칼슘벤토나이트 콜로이드의 안정성에 대한 연구)

  • Baik Min-Hoon;Park Jong-Hoon;Cho Won-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.11 no.3
    • /
    • pp.12-19
    • /
    • 2006
  • In this study, the stability of Ca-bentonite colloids from Gyeongju area was studied by investigating the changes in the size of the bentonite colloids using a dynamic light scattering method depending on the geochemical conditions such as pH and ionic strength. Kinetic and equilibrium coagulation behavior of the bentonite colloids was investigated by changing the pH and ionic strength of the bentonite suspensions. The results showed that the stability of the bentonite colloids strongly depended upon contact time, pH, and ionic strength. It was also shown that the bentonite colloids were unstable at higher ionic strength greater than 0.01 M $NaClO_4$ at whole pH values considered. In addition, the stability ratio Wand the critical coagulation concentration (CCC) were also calculated using the data from the kinetic coagulation experiments. The stability ratio W was decreased as the ionic strength increased and varied with pH depending on the ionic strength. The CCC of the Ca-bentonite colloids was about 0.05 M $NaClO_4$ around pH 7.

Mineral Carbonation of Serpentinite: Extraction, pH swing, and Carbonation (사문암(Serpentinite)을 이용한 광물탄산화: Mg 추출과 pH swing 및 탄산화)

  • LEE, Seung-Woo;Won, Hyein;Choi, Byoung-Young;Chae, Soochun;Bang, Jun-Hwan;Park, Kwon Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.205-217
    • /
    • 2017
  • Mineral carbonation by indirect method has been studied by serpentinite as cation source. Through the carbonation of $CO_2$ and alkaline earth ions (calcium and magnesium) from serpentinite, the pure carbonates including $MgCO_3$ and $CaCO_3$ were synthesized. The extraction solvent used to extract magnesium (Mg) was ammonium sulfate ($(NH_4)_2SO_4$), and the investigated experimental factors were the concentration of $(NH_4)_2SO_4$, reaction temperature, and ratio of serpentinite to the extraction solvent. From this study, the Mg extraction efficiency of approximately 80 wt% was obtained under the conditions of 2 M $(NH_4)_2SO_4$, $300^{\circ}C$, and a ratio of 5 g of serpentinite/75 mL of extraction solvent. The Mg extraction efficiency was proportional to the concentration and reaction temperature. $NH_3$ produced from the Mg extraction of serpentinite was used as a pH swing agent for carbonation to increase the pH value. About 1.78 M of $NH_3$ as the form of $NH_4{^+}$ was recovered after Mg extraction from serpentinite. And, the main step in Mg extraction process of serpentinite was estimated by geochemical modeling.

Geochemistry and Genesis of the Guryonsan(Ogcheon) Uraniferous Back Slate (구룡산(九龍山)(옥천(決川)) 함(含)우라늄 흑색(黑色) 점판암(粘板岩)의 지화학(地化學) 및 성인(成因))

  • Kim, Jong Hwan
    • Economic and Environmental Geology
    • /
    • v.22 no.1
    • /
    • pp.35-63
    • /
    • 1989
  • Geochemical characteristics of the Guryongsan (Ogcheon) uraniferous black slate show that this is an analogue to the conventional Chattanooga and Alum shales in occurrences. Whereas, its highest enrichment ratio in metals including uranium, among others, is explained by the cyclic sedimentation of the black muds and quartz-rich silts, and the uniform depositional condition with some what higher pH condition compared to the conditions of the known occurrences. The cyclic sedimentation, caused by the periodic open and close of the silled basin, has brought about the flush-out) of the uranium depleted water and the recharge with the new metal-rich sea water, which consequently contributed to the high concentration of metals in mud. The metal-rich marine black muds, which mostly occur in the early to middle Palaeozoic times, is attributed by the geologic conditions which related to the atmospheric oxygen contents, and these are scarcely met in the late Precambrian and/or with the onset of Palaeozoic era in the geologic evolution of the earth.

  • PDF

A Comprehensive Review of Geological CO2 Sequestration in Basalt Formations (현무암 CO2 지중저장 해외 연구 사례 조사 및 타당성 분석)

  • Hyunjeong Jeon;Hyung Chul Shin;Tae Kwon Yun;Weon Shik Han;Jaehoon Jeong;Jaehwii Gwag
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.311-330
    • /
    • 2023
  • Development of Carbon Capture and Storage (CCS) technique is becoming increasingly important as a method to mitigate the strengthening effects of global warming, generated from the unprecedented increase in released anthropogenic CO2. In the recent years, the characteristics of basaltic rocks (i.e., large volume, high reactivity and surplus of cation components) have been recognized to be potentially favorable in facilitation of CCS; based on this, research on utilization of basaltic formations for underground CO2 storage is currently ongoing in various fields. This study investigated the feasibility of underground storage of CO2 in basalt, based on the examination of the CO2 storage mechanisms in subsurface, assessment of basalt characteristics, and review of the global research on basaltic CO2 storage. The global research examined were classified into experimental/modeling/field demonstration, based on the methods utilized. Experimental conditions used in research demonstrated temperatures ranging from 20 to 250 ℃, pressure ranging from 0.1 to 30 MPa, and the rock-fluid reaction time ranging from several hours to four years. Modeling research on basalt involved construction of models similar to the potential storage sites, with examination of changes in fluid dynamics and geochemical factors before and after CO2-fluid injection. The investigation demonstrated that basalt has large potential for CO2 storage, along with capacity for rapid mineralization reactions; these factors lessens the environmental constraints (i.e., temperature, pressure, and geological structures) generally required for CO2 storage. The success of major field demonstration projects, the CarbFix project and the Wallula project, indicate that basalt is promising geological formation to facilitate CCS. However, usage of basalt as storage formation requires additional conditions which must be carefully considered - mineralization mechanism can vary significantly depending on factors such as the basalt composition and injection zone properties: for instance, precipitation of carbonate and silicate minerals can reduce the injectivity into the formation. In addition, there is a risk of polluting the subsurface environment due to the combination of pressure increase and induced rock-CO2-fluid reactions upon injection. As dissolution of CO2 into fluids is required prior to injection, monitoring techniques different from conventional methods are needed. Hence, in order to facilitate efficient and stable underground storage of CO2 in basalt, it is necessary to select a suitable storage formation, accumulate various database of the field, and conduct systematic research utilizing experiments/modeling/field studies to develop comprehensive understanding of the potential storage site.