• Title/Summary/Keyword: geocell, field results

Search Result 5, Processing Time 0.021 seconds

Three-dimensional numerical modelling of geocell reinforced soils and its practical application

  • Song, Fei;Tian, Yinghui
    • Geomechanics and Engineering
    • /
    • v.17 no.1
    • /
    • pp.1-9
    • /
    • 2019
  • This paper proposes a new numerical approach to model geocell reinforced soils, where the geocell is described as membrane elements and the complex interaction between geocell and soil is realized by coupling their degrees of freedom. The effectiveness and robustness of this approach are demonstrated using two examples, i.e., a geocell-reinforced foundation and a large scale retaining wall project. The first example validates the approach against established solutions through a comprehensive parametrical study to understand the influence of geocell on the improvement of bearing capacity of foundations. The study results show that reducing the geocell pocket size has a strong effect on improving the bearing capacity. In addition, when the aspect ratio maintains the same value, the bearing capacity improvement with increasing geocell height is insignificant. Comparing with the field monitoring and measurement in the project, the second example investigates the application of the approach to practical engineering projects. This paper provides a practically feasible and efficient modelling approach, where no explicit interface or contact is required. This allows geocell reinforced soils in large scale project can be effectively modelled where the mechanism for complex geocell-soil interaction can be explicitly observed.

Ground improvement using geocells to enhance trafficability in desert soils

  • Kumar, Anand;Singh, Akshay P.;Chatterjee, Kaustav
    • Geomechanics and Engineering
    • /
    • v.19 no.1
    • /
    • pp.71-78
    • /
    • 2019
  • Massive investments are going on to promote and build transportation infrastructure all across the globe with the challenges being more than budgetary. Sandy soils which are predominant in coastal and border areas in India have typical characteristics. The shear strength of such soil is very low which makes it difficult for any kind of geotechnical construction and hence soil stabilization needs to be carried out for such soil conditions. The use of geocells is one of the most economical methods of soil improvement which is used to increase strength and stiffness and reduce the liquefaction potential of the soil. The use of geocells in stabilizing desert sand and results from a series of plate load test on unreinforced soil and geocell reinforced homogenous sand beds are presented in the present study. It also compares the field results using various load class vehicles like heavy load military vehicles on geocell reinforced soils with the experimental results and comes out with the fact that the proposed technique increases the strength and stiffness of sandy soil considerably and provides a solution for preventing settlement and subsidence.

Effect of cohesion of infill materials on the performance of geocell-reinforced cohesive soil subgrade

  • Yang Zhao;Zheng Lu;Jie Liu;Lei Ye;Weizhang Xu;Hailin Yao
    • Geomechanics and Engineering
    • /
    • v.33 no.3
    • /
    • pp.301-315
    • /
    • 2023
  • Adopting cohesive soil as geocell-pocket infill materials is not fully accepted by researchers in the field of road engineering. The cohesion that may inhibit the lateral limitation of geocells is a common vital idea that exists within every researcher. However, the influence of infill materials' cohesion on geocell-reinforced performance is still not thoroughly determined. The mechanism behind this still needs to be studied in depth. This study initially discussed the relationship between subgrade bearing capacity, geocells' contribution to reinforced performance, and infill materials' cohesion (IMC). A law was proposed that adopting the soil with high cohesion as infill materials benefited the subgrade bearing capacity, but this was attributed to the superior mechanical properties of infill materials rather than geocells' contribution. Moreover, the vertical and lateral deformation of subgrade, coupling shear stress and confining stress of geocells, and deformation of geocells were deeply studied to analyze the mechanism that high cohesion can inhibit the geocells' contribution. The results indicate that the infill materials with high cohesion result in the total displacement of the subgrade toward to deeper depth, not the lateral direction. These responses decrease the vertical coupling shear stress, confining stress, and normal displacement of geocell walls, which weaken the lateral limitation of geocells.

Analysis of Long-Term Settlement Parameter Correlation and Bearing Capacity Reinforcement Effect for Closed Waste Landfill (사용종료 매립장의 장기침하 모델 매개변수 상관성 및 지지력 보강효과 분석)

  • Cho, Young-Kweon;Chae, Young Su
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2013
  • Recently, the closed landfills are usually converted into parks or playground by the check the stability of landfill because they settle unevenly making them unsuitable for structures. When the closed landfill reuse, environmental and structural stability is important. To increase the bearing capacity and reduce the probable settlement of a foundation on waste disposal ground, a layer of geosynthetics(Geocell) is placed on the waste disposal ground. In this paper, the analysis of long-term settlement parameter correlation was performed, also the evaluation of bearing capacity reinforcement effect was conducted by field test. The settlement measured in the field, and input the same ground index when an integer to identify each model were compared by calculating the settlement. In addition, by adjusting the parameters of each model to identify the most similar to the value of field measurement parameters were calculated. Based on the analysis results, when the using the Park's model C(intermediate) = 0.0678, the expected settlement is similar to the field measurement results. Also, the bearing capacity of geocell reinforced ground is 1.193~1.554 times higher than that of unreinforced ground.

Numerical Modeling of Reinforced Soil with Waste Tirecell (타이어셀로 보강된 지반의 거동에 대한 수치모델링)

  • Yoon, Yeowon;Kyeon, Kwangsoo;Yoon, Gillim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.6
    • /
    • pp.5-12
    • /
    • 2008
  • In this research, the plate load tests on sand which is reinforced by Tirecell mat were simulated by finite element method (FEM). Tirecell mat made by waste tires has the same function and similar shape to Geocell for soil reinforcement and it can also be used for civil engineering structure. The results were compared with those of field plate load tests for evaluation of suitability of modeling method. From the comparison of both results, it can be seen that the settlements by FEM were very similar to test results with small margin under the ultimate bearing capacity. For the ultimate bearing capacities of two results, difference was very small. After the confirmation of the modelling, reinforcing effects with variation of cover depth and number of reinforcement layers by Tirecell were analyzed additionally. Reinforcing effect decreases with increasing soil cover depth, and this is similar to previous test results by soil cover depth. As the number of reinforcing layers increased, reinforcing effect increased. However at more than 2 reinforcing layers, reinforcing effect was negligible. In conclusion, the modeling method in this research might be used for analysis of reinforced structures using Tirecell mat.

  • PDF