• 제목/요약/키워드: genus-specific protein

검색결과 43건 처리시간 0.021초

Molecular Identification and Sequence Analysis of Coat Protein Gene of Ornithogalum mosaic virus Isolated from Iris Plant

  • Yoon, Hye-In;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • 제18권5호
    • /
    • pp.251-258
    • /
    • 2002
  • A potyvirus was isolated from cultivated Iris plants showing leaf streak mosaic symptom. Reverse transcription and polymerase chain reaction (RT-PCR) product of 1 kb long which encoded partial nuclear inclusion B and N-terminal region of viral coat protein (CP) genes for potyviruses was successfully amplified with a set of potyvirus-specific degenerate primers with viral RNA samples from the infected leaves: The RT-PCR product was cloned into the plasmid vector and its nucleotide sequences were determined. The nucleotide sequence of a CDNA clone revealed that the virus was an isolate of Ornithogalum moseic virus (OrMV) based on BLAST search analysis and was denoted as OrMV Korean isolate (OrMV-Ky). To further characterize the CP gene of the virus, a pair of OrMV-specific primers was designed and used for amplification of the entire CP gene of OrMV-Kr, The virus was easily and reliably detected from virus-infected Iris leaves by using the RT-PCR with the set of virus-specific primers. The RT-PCR product of the CP gene of the virus was cloned and its sequences were determined from selected recombinant CDNA clones. Sequence analysis revealed that the CP of OrMV-Kr consisted of 762 nucleotides, which encoded 253 amino acid residues. The CP of OrMV-Ky has 94.1-98.0% amino acid sequence identities (20 amino acid alterations) with that of other three isolates of OrMV, Two NT rich potential N-glycosylation motif sequences, NCTS and NWTM, and a DAC triple box responsible for aphid transmission were conserved in CPs of all the strains of OrMV. The virus has 58.5-86.2% amino acid sequence identities with that of other 16 potyviruses, indicating OrMV to be a distinct species of the genus. OrMV-Ky was the most related with Pterostylia virus Yin the phylogenetic tree analysis of CP at the amino acid level. This is the first report on the occurrence of OrMV in Iris plants in Korea. Data in this study indicate that OrMV is found in cultivated Iris plants, and may have mixed infection of OrMV and Iris severe mosaic virus in Korea.

Characterization of Grapevine leafroll-assoiated virus 1 and Grapevine leafroll-associated virus 3 isolated from Vitaceae in Korea.

  • Kim, Hyun-Ran;Lee, Sin-Ho;Kim, Jae-Hyun;Yoon, Gum-Ook;Kim, Jeong-Soo
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 2003년도 정기총회 및 추계학술발표회
    • /
    • pp.138.2-139
    • /
    • 2003
  • Grapevine leafroll-associated 1 virus (GLRaV-1) and Grapevine leafroll-associated 3 virus (GLRaV-3), member of the genus Ampelovirus, are important viral disease of grapevine in the world. these viruses transmitted only dicotyledonous host by vectors such as mealybugs and there is no suitable herbaceous host for virus. The diseased leaves turn yellowish or reddish depending on cultivars and viruses. Viruses are existed at low concentration and ununiformly distribution in grapevine. Using small-scale double-stranded RNA (dsRNA) extraction method, reverse transcription and polymerase chain reaction (RT-PCR) product of 1Kb long which encoded of coat protein (CP) gene for both viruses was successfully amplified with a specific primers. The RT-PCR product was cloned into the plasmid vector and its nucleotide sequences were determined from selected recombinant cDNA clones. Sequence analysis revealed that the CP of GLRaV-1 consisted of 969 nucleotide, which encoded 323 amino acid residues and CP of GLRaV-3 consisted of 942 nucleotide, which encoded 314 amino acid residues. The CP of GLRaV-1 and GLRaV-3 has 93.8% and 98.7% amino acid sequence identities, respectively.

  • PDF

Clustering and Comparative Analyses of Complete Genomes for the Elucidation of Evolutionary Characteristics

  • Kim, Jin-Sik;Lee, Sang-Yup
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2005년도 BIOINFO 2005
    • /
    • pp.78-82
    • /
    • 2005
  • Three of the genus Pseudomonas (P. aeruginosa, P. putida, P. syringae) show highly different phenotypic characteristics among them. Two of the three members are pathogenic and the other is non-pathogenic. Comparative analyses of the complete genomes can elucidate the genomic similarities and differences among them. We analyzed the three genomes and the genes of them to reveal the degree of conservation of chromosomes and similarity of the genes. The 2-dimensional dot plot between the pathogenic P. aeruginosa and non-pathogenic P. putida shared higher portion of the nucleotide sequences than other two combinations. Comparison of the nucleotide compositions by calculating the genome-scale plot of G+C contents and GC skew showed the variation of location. Comparison of the metabolic capabilities using the functional classification of KEGG orthology revealed that the differences in the number of genes for the specific functional categories resulted in the phenotypic differences. Finally combination of the analyses using the protein homologs supported the evolutionary distance of the P. putida obtained from other genome-scale comparisons.

  • PDF

Purification and Characterization of A Cell Wall Hydrolyzing Enzyme Produced by An Alkalophilic Bacillus sp. BL-29

  • Hong, Soon-Duck;Kim, Tae-Ho;Hong, Soon-Duck
    • Journal of Microbiology and Biotechnology
    • /
    • 제5권4호
    • /
    • pp.206-212
    • /
    • 1995
  • A strain BL-29, which produces a extracellular lytic enzyme on E. coli was isolated from the soil. The strain was identified as belonging to the genus Bacillus sp. The lytic enzyme was purified to homogeneity by ion exchange chromatography and gel filtration. Specific activity of the purified enzyme was 28, 850 U/mg protein and yield of the enzyme was 5$%$. The purified enzyme showed a single band on SDS-PAGE and its molecular weight was estimated to be 31, 000 by SDS-polyacrylamide gel electrophoresis and gel filtration column chromatography. The optimum temperature and pH were $55^{\circ}C$ and pH 10.0, respectively. The enzyme was stable at $45^{\circ}C$ but enzyme activity was reduced by up to 50$%$ when the temperature was raised to $55^{\circ}C$ for 15 min. Stable range of pH was from 5.0 to 11.0. but Enzyme activity was inhibited by lead-acetate, mercuric chloride, ethylene glycol-bis-[$\beta$-aminoethyl ether]-N, N, $N^1, $N^1$-tetraacetic acid (EGTA), and ethylenediamine tetraacetic acid (EDTA), but not affected considerably by treatment with other chemical reagents.

  • PDF

Roles of ginsenosides in inflammasome activation

  • Yi, Young-Su
    • Journal of Ginseng Research
    • /
    • 제43권2호
    • /
    • pp.172-178
    • /
    • 2019
  • Inflammation is an innate immune response that protects the body from pathogens, toxins, and other dangers and is initiated by recognizing pathogen-associated molecular patterns or danger-associated molecular patterns by pattern-recognition receptors expressing on or in immune cells. Intracellular pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs), absent in melanoma 2, and cysteine aspartate-specific protease (caspase)-4/5/11 recognize various pathogen-associated molecular patterns and danger-associated molecular patterns and assemble protein complexes called "inflammasomes." These complexes induce inflammatory responses by activating a downstream effector, caspase-1, leading to gasdermin D-mediated pyroptosis and the secretion of proinflammatory cytokines, such as interleukin $(IL)-1{\beta}$ and IL-18. Ginsenosides are natural steroid glycosides and triterpene saponins found exclusively in the plant genus Panax. Various ginsenosides have been identified, and their abilities to regulate inflammatory responses have been evaluated. These studies have suggested a link between ginsenosides and inflammasome activation in inflammatory responses. Some types of ginsenosides, including Rh1, Rg3, Rb1, compound K, chikusetsu saponin IVa, Rg5, and Rg1, have been clearly demonstrated to inhibit inflammatory responses by suppressing the activation of various inflammasomes, including the NLRP3, NLRP1, and absent in melanoma 2 inflammasomes. Ginsenosides have also been shown to inhibit caspase-1 and to decrease the expression of $IL-1{\beta}$ and IL-18. Given this body of evidence, the functional relationship between ginsenosides and inflammasome activation provides new insight into the understanding of the molecular mechanisms of ginsenoside-mediated antiinflammatory actions. This relationship also has applications regarding the development of antiinflammatory remedies by ginsenoside-mediated targeting of inflammasomes, which could be used to prevent and treat inflammatory diseases.

Complete genome sequence of bacteriocin-producing Ligilactobacillus salivarius B4311 isolated from fecal samples of broiler chicken with anti-listeria activity

  • Subin Han;Arxel G. Elnar;Chiwoong Lim;Geun-Bae Kim
    • Journal of Animal Science and Technology
    • /
    • 제66권1호
    • /
    • pp.232-236
    • /
    • 2024
  • Ligilactobacillus is a genus of Gram-positive lactobacilli commonly found in the intestinal tracts of vertebrates. It has been granted a Qualified Presumption of Safety (QPS) status from the European Food Safety Authority (EFSA). One specific strain, Ligilactobacillus salivarius B4311, was isolated from fecal samples of broiler chickens from a farm associated with Chung-Ang University (Anseong, Korea). This strain was observed to have inhibitory effects against Listeria monocytogenes. In this paper, we present the complete genome sequence of Lig. salivarius B4311. The whole genome of strain B4311 comprises 2,071,255 bp assembled into 3 contigs representing a chromosome, repA-type megaplasmid, and small plasmid. The genome contains 1,963 protein-coding sequences, 22 rRNA genes, and 78 tRNA genes, with a guanine + cytosine (GC) content of 33.1%. The megaplasmid of strain B4311 was found to contain the bacteriocin gene cluster for salivaricin P, a two-peptide bacteriocin belonging to class IIb.

GM 격리포장 내 고추에서 분리한 Cucumber mosaic virus 분리주들의 외피단백질 유전자 비교 (Comparative Analysis of Coat Protein Gene of Isolates of Cucumber mosaic virus Isolated from Pepper Plants in Two GMO Environmental Risk Assessment Fields)

  • 홍진성;박호섭;류기현;최장경
    • 식물병연구
    • /
    • 제15권3호
    • /
    • pp.165-169
    • /
    • 2009
  • 남양주와 안성의 GM 고추 격리포장에서 모자이크 병징이 뚜렷한 이병주들로부터 바이러스를 채집하여 그 특성을 조사하였다. CMV RNA3의 외피단백질 유전자를 포함하는 3' 말단 부분에 대한 특이 프라이머를 이용하여 RT-PCR을 실시한 결과, 예상되었던 약 950 bp의 밴드가 확인되었다. 이 PCR 산물을 이용하여 클로닝을 실시하였으며 분석된 외피단백질유전자 염기서열을 토대로 기존에 알려진 Fny-CMV 외피단백질유전자 염기서열과 비교하였다. 남양주와 안성에서 채집된 각 분리주들은 Fny-CMV 염기서열과의 상동성에 있어 특별한 차이를 보이지 않았지만 염기서열을 이용한 계통발생분석에서는 두 지역간 CMV가 확연히 다른 그룹으로 나타났다. 한편, 분리된 각 CMV의 외피단백질유전자 염기서열을 통해 확인된 아미노산서열과 Fny-CMV의 외피단백질 아미노산 서열을 비교한 결과, 남양주에서 분리된 CMV가 96.8%에서 97.3%의 유사성을 보인 반면, 안성의 고추포장에서 분리된 CMV는 95.9%에서 96.8%의 유사성을 보였다. 특히 남양주에서 분리된 CMV와 Fny-CMV 모두 88번째 잔기에서 Lysine(K)을 포함하지만 안성에서 분리된 CMV는 Arginine(R)을 포함하였으며, 91번째 잔기에서 전자는 Leucine(L)을 포함하지만 후자는 Valine(V)을 포함하는 것이 확인되었다. 이 같은 결과를 종합해볼 때, 남양주와 안성의 고추에서 각각 분리된 CMV는 서로 다른 지역적 특색을 나타내는 것으로 확인되었다.

Symptom Determinant as RNA3 of Lily Isolates of Cucumber mosaic virus on Zucchini Squash

  • Cho, Seung-Kook;Ahn, Hong-Il;Kim, Min-Jea;Choi, Jang-Kyung;Ryu, Ki-Hyun
    • The Plant Pathology Journal
    • /
    • 제20권3호
    • /
    • pp.212-219
    • /
    • 2004
  • Three isolates of Cucumber mosaic virus (CMV) from lily plants showing mosaic and distortion symptoms were detected by reverse-transcriptase polymerase chain reaction (RT-PCR) using primers specific to Cucumovirus genus namely, LK-CMV, LK4-CMV, and LKS-CMV. Restriction enzymes patterns of the RT-PCR products revealed that the lily isolates belonged to subgroup IA of CMV. In terms of biological properties, the lily isolates have highly similar but distinct pathogenicity as reported in other lily strains and ordinary strains of CMV. To characterize the molecular properties, cDNAs containing coat protein (CP) gene and 3' non-coding region (NCR) of RNA3 for the isolates were cloned and their nucleotide sequences were determined. The CP similarity (218 amino acids) was highly homologous (>97%) with that of subgroup I CMV strains. However, an additional 20-nulcleotide long segment was only present in 3' NCR of lily isolates, which form an additional stem-loop RNA structure. By using chimeric construct exchange cDNA containing 3'NCR of LK-CMV into the full-length cDNA clone of RNA3 of Fny-CMV, this additional segment may prove to be significant in the identification and fitness of the virus in lily plants. The pathology of zucchini squash infected by F1F2L3-CMV, a pseudorecombinant virus was showed to change drastically the severe mosaic and stunting symptom into a mild chlorotic spot on systemic leave, compared with Fny-CMV. To delimit the sequence of RNA3 affected the pathology, various RNA3 chimeras were constructed between two strains of CMV. The symptom determinants of F1F2L3-CMV were mapped to the positions amino acid 234, 239, and 250 in 3a movement protein (MP). RNA3 chimeras changed the sequences encoding three amino acids were resulted in alteration of systemic symptom.

Immunogenicity of a DNA and Recombinant Protein Vaccine Combining LipL32 and Loa22 for Leptospirosis Using Chitosan as a Delivery System

  • Umthong, Supawadee;Buaklin, Arun;Jacquet, Alain;Sangjun, Noppadol;Kerdkaew, Ruthairat;Patarakul, Kanitha;Palaga, Tanapat
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권4호
    • /
    • pp.526-536
    • /
    • 2015
  • Leptospirosis is a worldwide zoonotic disease caused by pathogenic Leptospira, a genus of which more than 250 serovars have been identified. Commercial bacterin vaccines are limited in that they lack both cross-protection against heterologous serovars and long-term protection. This study investigated in mice the immunogenicity of an anti-leptospirosis vaccine, using the outer membrane proteins LipL32 and Loa22 as antigens. The immunogenicity of this vaccine formulation was compared with those induced by vaccines based on LipL32 or Loa22 alone. A DNA-encapsulated chitosan nanoparticle was used for in vivo DNA delivery. Using a unique DNA plasmid expressing both lipL32 and loa22 for vaccination, higher antibody responses were induced than when combining plasmids harboring each gene separately. Therefore, this formulation was used to test the immunogenicity when administered by a heterologous prime (DNA)-boost (protein) immunization regimen. The specific antibody responses against LipL32 (total IgG and IgG1) and Loa22 (IgG1) were higher in mice receiving two antigens in combination than in those vaccinated with a single antigen alone. Although no significant difference in splenic CD4+ T cell proliferation was observed among all groups of vaccinated mice, splenocytes from mice vaccinated with two antigens exhibited higher interferon-γ and IL-2 production than when using single antigens alone upon in vitro restimulation. Taken together, the immunogenicity induced by LipL32 and Loa22 antigens in a heterologous primeboost immunization regimen using chitosan as a DNA delivery system induces higher immune response, and may be useful for developing a better vaccine for leptospirosis.

광견병바이러스에 대한 단크론항체 생산 및 특성 (Production and characterization of monoclonal antibodies against rabies virus)

  • 이승철;윤영심;송윤경;우계형;진영화;강신영
    • 한국동물위생학회지
    • /
    • 제33권2호
    • /
    • pp.105-111
    • /
    • 2010
  • Rabies virus which belongs to the genus Lyssavirus of the family Rhabdoviridae is known as a highly neurotropic virus and causes fatal encephalitis accompanied by severe neurological symptoms in almost all mammals, including humans. In this study, monoclonal antibodies (MAbs) against rabies virus were produced, characterized and applications of MAbs as diagnostic reagents were assessed Spleen and inguinal lymph node cells from Balb/c mouse immunized with purified rabies virus were fused with SP2/O myeloma cells using polyethylene glycol (PEG) and hybridoma cells producing rabies virus-specific MAbs were screened by an indirect fluorescent antibody test. A total of ten MAbs were produced against rabies virus. The protein specificity and neutralizing activity of MAbs were determined by Western blot analysis and fluorescent antibody virus neutralization test, respectively. As a result, two MAbs, 5G3 and 6H4 had specificity for nucleoprotein (N protein) and two other MAbs, 5B1 and 5C1 had neutralizing activity for rabies virus. Some MAbs recognized the rabies virus-infected bovine brain stem cells by immunohistochemistry (IHC) assay. In conclusion, it was confirmed that MAbs produced in this study were rabies virusspecific and could be used as reliable diagnostic reagents for the detection of rabies virus.