• Title/Summary/Keyword: genus Otus

Search Result 19, Processing Time 0.029 seconds

Bacterial core community in soybean rhizosphere (콩 근권의 핵심 세균 군집)

  • Lee, Youngmi;Ahn, Jae-Hyung;Choi, Yu-Mi;Weon, Hang-Yeon;Yoon, Jung-Hoon;Song, Jaekyeong
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.347-354
    • /
    • 2015
  • Soybean is well known to be originated from Korea and far-east Asian countries, and studies of many root nodule bacteria associated with soybean have mainly-focused on nitrogen fixation, but much less study was carried out on bacterial community in the rhizosphere of soybean. In this study, we analyzed the bacterial community in rhizosphere of Korean soybean, Daepungkong using the pyrosequencing method based on the 16S rRNA gene to characterize the change of the rhizosphere community structure according to the growth stages of soybeans and to elucidate bacterial core community in rhizosphere of soybean. Our results revealed that bacterial community of rhizosphere soil differed from that of bulk soil and was composed of a total of 21 bacterial phyla. The predominant phylum in the rhizosphere of soybean was Proteobacteria (36.6-42.5%) and followed by Acidobacteria (8.6-9.4%), Bacteroidetes (6.1-10.9%), Actinobacteria (6.4-9.8%), and Firmicutes (5.7-6.3%). The bacterial core community in soybean rhizosphere was mainly composed of the operational taxonomic units (OTUs) belonging to the phylum Proteobacteria throughout all growth stages. The OTU00006 belonged to the genus Bradyrhizobium had the highest abundance and Steroidobacter, Streptomyces, Devosia were followed. These results show that bacterial core community in soybean rhizosphere was mainly composed of OTUs associated with plant growth promotion and nutrient cycles.

한국산 빗살거미불가사리속(빗살거미불가사리과, 거미불가사리아강)의 3 종에 대한 분류학적 재검토

  • 유재원;홍재상;박흥식
    • Animal Systematics, Evolution and Diversity
    • /
    • v.11 no.4
    • /
    • pp.417-434
    • /
    • 1995
  • Three species (0. kinbergi, 0. sarsi and 0 . sarsi vadicola) of the genus Ophiura (Echinodermacta: Ophiuroidea) were sampled from the various localities of Korean waters (Kyonggi Bay in March and September, 1989 and February, 1994; Yellow Sea in September and October, 1992; Southern Sea and Korean Strait in May, 1992; and eastern coasts adjacent to Kangnung in April, July, October, 1993 and January, 1994). Results of the examination of 250 Operational Taxonomical Units (OTUs) are presented based on the 20 morphometric variables to evaluate their taxonomic characters and positions. In cluster analysis, 250 OTUs were divided into 3 phenons (0. kinbergi, 0 . sarsi and 0 . sarsi vadicola) at the Euclidean distance levels of 6.84 and 2 phenons (a phenon composed of 0 . sarsi and 0 . sarsi vadicola and the other of 0. kinbergi) at 7.50. Stepwise discriminant analysis was used in order to produce a good discrimination model and 13 morphological characters (the total number of comb papillae, the number of primary comb papillae and shape of comb papillae (2). etc.) were extracted. The results of canonical discriminant analysis illustrated clear distinction among 3 phenons by the distance of 8.26 between 0 . sarsi and 0. sarsi vadicola, 24.24 between 0 . kinbergi and 0. sarsi vadicola and 21.63 between 0 . kinbergi and 0 . sarsi.

  • PDF

Effects of Italian ryegrass silage-based total mixed ration on rumen fermentation, growth performance, blood metabolites, and bacterial communities of growing Hanwoo heifers

  • Min-Jung Ku;Michelle A. Miguel;Seon-Ho Kim;Chang-Dae Jeong;Sonny C. Ramos;A-Rang Son;Yong-Il Cho;Sung-Sill Lee;Sang-Suk Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.5
    • /
    • pp.951-970
    • /
    • 2023
  • This study utilized Italian ryegrass silage (IRGS) - based total mixed ration (TMR) as feedstuff and evaluated its effects on rumen fermentation, growth performance, blood parameters, and bacterial community in growing Hanwoo heifers. Twenty-seven Hanwoo heifers (body weight [BW], 225.11 ± 10.57 kg) were randomly allocated to three experimental diets. Heifers were fed 1 of 3 treatments as follows: TMR with oat, timothy, and alfalfa hay (CON), TMR with 19% of IRGS (L-IRGS), and TMR with 36% of IRGS (H-IRGS). Feeding high levels of IRGS (H-IRGS) and CON TMR to heifers resulted in a greater molar proportion of propionate in the rumen. The impact of different TMR diets on the BW, average daily gain, dry matter intake, and feed conversion ratio of Hanwoo heifers during the growing period did not differ (p > 0.05). Furthermore, the blood metabolites, total protein, albumin, aspartate aminotransferase, glucose, and total cholesterol of the heifers were not affected by the different TMR diets (p > 0.05). In terms of rumen bacterial community composition, 264 operational taxonomic units (OTUs) were observed across the three TMR diets with 240, 239, and 220 OTUs in CON, L-IRGS, and H-IRGS, respectively. IRGS-based diets increased the relative abundances of genera belonging to phylum Bacteroidetes but decreased the abundances of genus belonging to phylum Firmicutes compared with the control. Data showed that Bacteroidetes was the most dominant phylum, while Prevotella ruminicola was the dominant species across the three TMR groups. The relative abundance of Ruminococcus bromii in the rumen increased in heifers fed with high inclusion of IRGS in the TMR (H-IRGS TMR). The relative abundance of R. bromii in the rumen significantly increased when heifers were fed H-IRGS TMR while P. ruminicola increased in both L-IRGS and H-IRGS TMR groups. Results from the current study demonstrate that the inclusion of IRGS in the TMR is comparable with the TMR containing high-quality forage (CON). Thus, a high level of IRGS can be used as a replacement forage ingredient in TMR feeding and had a beneficial effect of possibly modulating the rumen bacterial community toward mainly propionate-producing microorganisms.

A Meta-Analysis of Fecal Bacterial Diversity in Dogs (메타분석을 통한 반려견 분변 박테리아 군집 조사)

  • Jeong, Jin Young;Kim, Minseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.141-147
    • /
    • 2017
  • In this study, a meta-analysis of fecal bacteria in dogs was conducted using 16S rRNA gene sequences that have been recovered from cloning and Sanger sequencing. For this meta-analysis, we retrieved all 16S rRNA gene sequences recovered from fecal bacteria in dogs in the RDP database (Release 11, Update 3). A total of 420 sequences were identified from the RDP database, 42 of which were also recovered from cultured isolates. The 420 sequences were assigned to five phyla, of which Firmicutes was the most predominant phylum, accounting for 55.2% of all 420 sequences. Bacteroidetes was the second most predominant phylum, accounting for 32.1% of the 420 sequences, followed by Actinobacteria (6.4%), Fusobacteria (3.8%), and Proteobacteria (2.4%). The genus Bacteroides within Bacteroidetes was the largest, representing 30.0% of all 420 sequences, while the putative genus Clostridium XI within Firmicutes was the second largest, representing 27.4% of all 420 sequences. A total of 82 operational taxonomic units (OTUs) that are putative species were identified from the retrieved sequences. The results of this study will improve understanding of the diversity of fecal bacteria in dogs and guide future studies on the health and well-being of dogs.

Spatial Physicochemical and Metagenomic Analysis of Desert Environment

  • Sivakala, Kunjukrishnan Kamalakshi;Jose, Polpass Arul;Anandham, Rangasamy;Thinesh, Thangathurai;Jebakumar, Solomon Robinson David;Samaddar, Sandipan;Chatterjee, Poulami;Sivakumar, Natesan;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.9
    • /
    • pp.1517-1526
    • /
    • 2018
  • Investigating bacterial diversity and its metabolic capabilities is crucial for interpreting the ecological patterns in a desert environment and assessing the presence of exploitable microbial resources. In this study, we evaluated the spatial heterogeneity of physicochemical parameters, soil bacterial diversity and metabolic adaptation at meter scale. Soil samples were collected from two quadrats of a desert (Thar Desert, India) with a hot, arid climate, very little rainfall and extreme temperatures. Analysis of physico-chemical parameters and subsequent variance analysis (p-values < 0.05) revealed that sulfate, potassium and magnesium ions were the most variable between the quadrats. Microbial diversity of the two quadrats was studied using Illumina bar-coded sequencing by targeting V3-V4 regions of 16S rDNA. As for the results, 702504 high-quality sequence reads, assigned to 173 operational taxonomic units (OTUs) at species level, were examined. The most abundant phyla in both quadrats were Actinobacteria (38.72%), Proteobacteria (32.94%), and Acidobacteria (9.24%). At genus level, Gaiella represented highest prevalence, followed by Streptomyces, Solirubrobacter, Aciditerrimonas, Geminicoccus, Geodermatophilus, Microvirga, and Rubrobacter. Between the quadrats, significant difference (p-values < 0.05) was found in the abundance of Aciditerrimonas, Geodermatophilus, Geminicoccus, Ilumatobacter, Marmoricola, Nakamurella, and Solirubrobacter. Metabolic functional mapping revealed diverse biological activities, and was significantly correlated with physicochemical parameters. The results revealed spatial variation of ions, microbial abundance and functional attributes in the studied quadrats, and patchy nature in local scale. Interestingly, abundance of the biotechnologically important phylum Actinobacteria, with large proposition of unclassified species in the desert, suggested that this arid environment is a promising site for bioprospection.

Bacterial Community and Diversity from the Watermelon Cultivated Soils through Next Generation Sequencing Approach

  • Adhikari, Mahesh;Kim, Sang Woo;Kim, Hyun Seung;Kim, Ki Young;Park, Hyo Bin;Kim, Ki Jung;Lee, Youn Su
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.521-532
    • /
    • 2021
  • Knowledge and better understanding of functions of the microbial community are pivotal for crop management. This study was conducted to study bacterial structures including Acidovorax species community structures and diversity from the watermelon cultivated soils in different regions of South Korea. In this study, soil samples were collected from watermelon cultivation areas from various places of South Korea and microbiome analysis was performed to analyze bacterial communities including Acidovorax species community. Next generation sequencing (NGS) was performed by extracting genomic DNA from 92 soil samples from 8 different provinces using a fast genomic DNA extraction kit. NGS data analysis results revealed that, total, 39,367 operational taxonomic unit (OTU), were obtained. NGS data results revealed that, most dominant phylum in all the soil samples was Proteobacteria (37.3%). In addition, most abundant genus was Acidobacterium (1.8%) in all the samples. In order to analyze species diversity among the collected soil samples, OTUs, community diversity, and Shannon index were measured. Shannon (9.297) and inverse Simpson (0.996) were found to have the highest diversity scores in the greenhouse soil sample of Gyeonggi-do province (GG4). Results from NGS sequencing suggest that, most of the soil samples consists of similar trend of bacterial community and diversity. Environmental factors play a key role in shaping the bacterial community and diversity. In order to address this statement, further correlation analysis between soil physical and chemical parameters with dominant bacterial community will be carried out to observe their interactions.

Phylogenetic characteristics of bacterial populations and isolation of aromatic compounds utilizing bacteria from humus layer of oak forest (상수리림 부식층으로부터 방향족 화합물 분해세균의 분리 및 세균군집의 계통학적 특성)

  • Han, Song-Ih
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.175-182
    • /
    • 2016
  • In this study, we isolated aromatic compounds (lignin polymers) utilizing bacteria in humus layer of oak forest and investigated phylogenetic characteristics and correlation with major bacterial populations in the humus layer by pyrosequencing. Forty-two isolates using aromatic compounds such as p-anisic acid, benzoic acid, ferulic acid and p-coumaric acid were isolated and phylogentic analyses based on 16S rRNA gene sequences showed that the isolates belonged to the genus Rhizobium, Sphingomonas, Burkhorlderia, and Pseudomonas. Among these, Burkhorlderia species which belong to Betaproteobacteria class occupied 83% among the isolates. The bacterial populations in humus layer of oak forest were characterized by next generation pyrosequencing based on 16S rRNA gene sequences. The humus sample produced 7,862 reads, 1,821 OTUs and 6.76 variability index with 97% of significance level, respectively. Bacterial populations consist of 22 phyla and Betaproteobacteria were the major phylum consisting of 15 genera including Burkholderia, Polaromonas, Ralstoria, Zoogloea, and Variovorax. Approximately fifty percentage of them was Burkholderia. Burkholderia as the majority of population in the humus was considered to play a role in degrading lignin in humus layer of oak forest.

Comparison of Microbial Community Compositions between Doenjang and Cheonggukjang Using Next Generation Sequencing (차세대 염기서열 분석법을 이용한 전통 된장과 청국장의 미생물 분포 분석)

  • Ha, Gwangsu;Kim, JinWon;Shin, Su-Jin;Jeong, Su-Ji;Yang, Hee-Jong;Jeong, Do-Youn
    • Journal of Life Science
    • /
    • v.31 no.10
    • /
    • pp.922-928
    • /
    • 2021
  • To profile the microbial compositions of Korean traditional fermented paste made from whole soybeans, Doenjang and Cheonggukjang, and compare their taxonomic differences, we analyzed the V3-V4 region of 16S rRNA of naturally fermented foods by using next generation sequencing. α-Diversity results showed that values indicating bacterial community abundances (OTUs) and richness (ACE, Chao1) were statistically significant (p=0.0001) in Doenjang and Cheonggukjang. Firmicutes was the most common phylum in both groups, representing 97.02% and 99.67% in the Doenjang and Cheonggukjang groups, respectively. Bacillus was the most dominant genus, accounting for 71.70% and 59.87% in both groups. Linear discriminant (LDA) effect size (LEfSe) analysis was performed to reveal the significant ranking of abundant taxa in different fermented foods. A size-effect threshold of 2.0 on the logarithmic LDA score was used for discriminative functional biomarkers. On the species level, Bacillus subtilis, Tetragenococcus halophilus, and Clostridium arbusti were significantly more abundant in Doenjang than in Cheonggukjang, whereas Bacillus thermoamylovorans, Enterococcus faecium, and Lactobacillus sakei were significantly more abundant in Cheonggukjang than in Doenjang. Permutational multivariate analysis of variance (PERMANOVA) showed that the statistical difference in microbial clusters between the two groups was significant at the confidence level of p=0.001. This research could be used as basic research to identify the correlation between the biochemical characteristics of Korean fermented foods and the distribution of microbial communities.

Seasonal Changes in the Microbial Communities on Lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea

  • Woojung Lee;Min-Hee Kim;Juyeon Park;You Jin Kim;Eiseul Kim;Eun Jeong Heo;Seung Hwan Kim;Gyungcheon Kim;Hakdong Shin;Soon Han Kim;Hae-Yeong Kim
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.2
    • /
    • pp.219-227
    • /
    • 2023
  • Lettuce is one of the most consumed vegetables worldwide. However, it has potential risks associated with pathogenic bacterial contamination because it is usually consumed raw. In this study, we investigated the changes in the bacterial community on lettuce (Lactuca sativa L.) in Chungcheong-do, South Korea, and the prevalence of foodborne pathogens on lettuce in different seasons using 16S rRNA gene-based sequencing. Our data revealed that the Shannon diversity index showed the same tendency in term of the number of OTUs, with the index being greatest for summer samples in comparison to other seasons. Moreover, the microbial communities were significantly different between the four seasons. The relative abundance of Actinobacteriota varied according to the season. Family Micrococcaceae was most dominant in all samples except summer, and Rhizobiaceae was predominant in the microbiome of the summer sample. At the genus level, the relative abundance of Bacillus was greatest in spring samples, whereas Pseudomonas was greatest in winter samples. Potential pathogens, such as Staphylococcus and Clostridium, were detected with low relative abundance in all lettuce samples. We also performed metagenome shotgun sequencing analysis on the selected summer and winter samples, which were expected to be contaminated with foodborne pathogens, to support 16S rRNA gene-based sequencing dataset. Moreover, we could detect seasonal biomarkers and microbial association networks of microbiota on lettuce samples. Our results suggest that seasonal characteristics of lettuce microbial communities, which include diverse potential pathogens, can be used as basic data for food safety management to predict and prevent future outbreaks.