• 제목/요약/키워드: genomic structure

검색결과 286건 처리시간 0.032초

A Single Variation in the Influenza A Virus Genomic RNA Shows a Different Secondary Structure

  • Bae, Sung-Hun;Lee, Mi-Kyong;Park, Byong-Seok
    • 한국생물물리학회:학술대회논문집
    • /
    • 한국생물물리학회 1999년도 학술발표회 진행표 및 논문초록
    • /
    • pp.37-37
    • /
    • 1999
  • The influenza A viruses which are the most severe and common among the influenza viruses have 8 segmented RNA genomes Each RNA segment has highly conserved 3' and 5' terminal sequence except a single U\longrightarrowC variation especially in the 4 position of the 3' terminal of the 3 segments encoding own RNA polymerase.(omitted)

  • PDF

Combinatorial Library and Chemogenomics Approach: Discovery of Protein Secondary Structure Mimetic Small Molecule Inhibitors of Tryptase and Ref-l for Asthma

  • Moon, Sung-Hwan
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-1
    • /
    • pp.92-92
    • /
    • 2003
  • The drug discovery landscape is changing rapidly in the post-genomic era. Mapping of the human genome has led to an abundance of potential drug targets. Drug discovery times and costs can be significantly reduced by developing methods for high throughput target identification/ validation, multiplexed assay development and high efficient combinatorial chemistry. (omitted)

  • PDF

Functional analysis of SH3 domain containing ring finger 2 during the myogenic differentiation of quail myoblast cells

  • Kim, Si Won;Lee, Jeong Hyo;Park, Tae Sub
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제30권8호
    • /
    • pp.1183-1189
    • /
    • 2017
  • Objective: Owing to the public availability of complete genome sequences, including avian species, massive bioinformatics analyses may be conducted for computational gene prediction and the identification of gene regulatory networks through various informatics tools. However, to evaluate the biofunctional activity of a predicted target gene, in vivo and in vitro functional genomic analyses should be a prerequisite. Methods: Due to a lack of quail genomic sequence information, we first identified the partial genomic structure and sequences of the quail SH3 domain containing ring finger 2 (SH3RF2) gene. Subsequently, SH3RF2 was knocked out using clustered regularly interspaced short palindromic repeat/Cas9 technology and single cell-derived SH3RF2 mutant sublines were established to study the biofunctional activity of SH3RF2 in quail myoblast (QM7) cells during muscle differentiation. Results: Through a T7 endonuclease I assay and genotyping analysis, we established an SH3RF2 knockout (KO) QM7#4 subline with 61 and 155 nucleotide deletion mutations in SH3RF2. After the induction of myotube differentiation, the expression profiles were analyzed and compared between regular QM7 and SH3RF2 KO QM7#4 cells by global RNA sequencing and bioinformatics analysis. Conclusion: We did not detect any statistically significant role of SH3RF2 during myotube differentiation in QM7 myoblast cells. However, additional experiments are necessary to examine the biofunctional activity of SH3RF2 in cell proliferation and muscle growth.

The future of bioinformntics

  • Gribskov, Michael
    • 한국생물정보학회:학술대회논문집
    • /
    • 한국생물정보시스템생물학회 2003년도 제2차 연례학술대회 발표논문집
    • /
    • pp.1-1
    • /
    • 2003
  • It is clear that computers will play a key role in the biology of the future. Even now, it is virtually impossible to keep track of the key proteins, their names and associated gene names, physical constants(e.g. binding constants, reaction constants, etc.), and hewn physical and genetic interactions without computational assistance. In this sense, computers act as an auxiliary brain, allowing one to keep track of thousands of complex molecules and their interactions. With the advent of gene expression array technology, many experiments are simply impossible without this computer assistance. In the future, as we seek to integrate the reductionist description of life provided by genomic sequencing into complex and sophisticated models of living systems, computers will play an increasingly important role in both analyzing data and generating experimentally testable hypotheses. The future of bioinformatics is thus being driven by potent technological and scientific forces. On the technological side, new experimental technologies such as microarrays, protein arrays, high-throughput expression and three-dimensional structure determination prove rapidly increasing amounts of detailed experimental information on a genomic scale. On the computational side, faster computers, ubiquitous computing systems, high-speed networks provide a powerful but rapidly changing environment of potentially immense power. The challenges we face are enormous: How do we create stable data resources when both the science and computational technology change rapidly? How do integrate and synthesize information from many disparate subdisciplines, each with their own vocabulary and viewpoint? How do we 'liberate' the scientific literature so that it can be incorporated into electronic resources? How do we take advantage of advances in computing and networking to build the international infrastructure needed to support a complete understanding of biological systems. The seeds to the solutions of these problems exist, at least partially, today. These solutions emphasize ubiquitous high-speed computation, database interoperation, federation, and integration, and the development of research networks that capture scientific knowledge rather than just the ABCs of genomic sequence. 1 will discuss a number of these solutions, with examples from existing resources, as well as area where solutions do not currently exist with a view to defining what bioinformatics and biology will look like in the future.

  • PDF

옥수수 R-mb 유전자의 유전분석과 그의 구조 (Genetic and molecular analysis of the R-mb gene from maize)

  • 윤필용;유삼규;송원용;윤충효;임용표
    • 식물조직배양학회지
    • /
    • 제24권3호
    • /
    • pp.161-165
    • /
    • 1997
  • 옥수수의 색소합성을 조절하는 pattern allele의 하나인 R-mb유전자의 구조와 유전적 분석을 수행하였다. R-mb 유전자의 유전분석을 수행한 결과를 검토하여 볼 때 후대로 진행됨에 따라 색소 발현빈도_의 감소경향을 보이고 있었다. 또한 R-mb 유전자가 몇 개의 R subcomplex로 존재하는가를 알기 위해서는 우선 R specific probe인 pR-nj:1를 이용하여 Southern blot hybridization을 실시한 결과 약 3.9kb 및 약 7.75kb영역에서 2개의 band가 관찰되었다. R-mb 유전자를 클로닝하기 위하여 λFIXIIvector를 이용하여 library를 만들고 이로부터 mb-II, III, V, Ⅵ, Ⅶ 등 5개의 clone을 3차의 screen을 거쳐 확보하고 이중 mb-II 및 mb-Ⅵ를 중심으로 제한효소지도를 작성하였으며, 이 유전자의 구조와 기타 R locus관련 유전자들과 비교하였으며, 이러한 두 개의 R 요소가 어떻게 색소발현에 영향을 미치는가에 대에 검토하였다.

  • PDF

The Characterization of Mitochondrial DNA of Korean Ginseng (Panax ginseng C.A. Meyer)

  • Lim, Yong-Pyo;Park, Kwang-Tae
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1990년도 Proceedings of International Symposium on Korean Ginseng, 1990, Seoul, Korea
    • /
    • pp.168-174
    • /
    • 1990
  • This study was focused on the characterization of mitochondrial DNA (mtDNA) for molecular genetically approach of energy Production related mechanism in Panax Ein.fend. The simple and efficient method of mtDNA isolation from ginseng has been developed by modification of recently advanced methods. This procedure can successfully apply to mtDNA isolation of several plants. MtDNA of etiolated shoot and one-year root were digested with restriction endonucleases, but that of 6-year root not Any difference was not observed in the restriction endonuclease digestion patterns among the ginseng variants. Molecular size of ginseng mtDNA was estimated at least 159 kb by the restriction endonuclease fragment analysis. The 4.5 kb extra band at the lane of EcoRll treatment could be observed in restriction patterns digested with the methylation sensitive endonucleases, BstN 1 and EcoRll. For construction of mitochondrial genomic library of ginseng, mtDNA was partially digested with EcoRl, and packaged with EMBL4 phage vector Genomic library was screened and purified for further research including restricttion mapping of ginseng mtDNA, and cloning of the genes. The gene of ATP synthase A subunit was cloned koto the purified EMBL4 library clone No. 16. Now, clone No. 16 is subcloned for structure gene sequence analysis.

  • PDF

Close Relationship Between SARS-Coronavirus and Group 2 Coronavirus

  • Kim, Ok-Ju;Lee, Dong-Hun;Lee, Chan-Hee
    • Journal of Microbiology
    • /
    • 제44권1호
    • /
    • pp.83-91
    • /
    • 2006
  • The sudden appearance and potential lethality of severe acute respiratory syndrome (SARS)-associated coronavirus (SARS-CoV) in humans has resulted in a focusing of new attention on the determination of both its origins and evolution. The relationship existing between SARS-CoV and other groups of coronaviruses was determined via analyses of phylogenetic trees and comparative genomic analyses of the coronavirus genes: polymerase (Orflab), spike (S), envelope (E), membrane (M) and nucleocapsid (N). Although the coronaviruses are traditionally classed into 3 groups, with SARS-CoV forming a $4^{th}$ group, the phylogenetic position and origins of SARS-CoV remain a matter of some controversy. Thus, we conducted extensive phylogeneitc analyses of the genes common to all coronavirus groups, using the Neighbor-joining, Maximum-likelihood, and Bayesian methods. Our data evidenced largely identical topology for all of the obtained phylogenetic trees, thus supporting the hypothesis that the relationship existing between SARS-CoV and group 2 coronavirus is a monophyletic one. Additional comparative genomic studies, including sequence similarity and protein secondary structure analyses, suggested that SARS-Co V may bear a closer relationship with group 2 than with the other coronavirus groups. Although our data strongly suggest that group 2 coronaviruses are most closely related with SARS-CoV, further and more detailed analyses may provide us with an increased amount of information regarding the origins and evolution of the coronaviruses, most notably SARS-CoV.

고려인삼의 미토콘드리아 DNA의 분자생물학적 특성연구 (The Characterization of Mitochondrial DNA of Korean Ginseng (Panax ginseng C.A. Meyer))

  • Lim, Yong-Pyo;Park, Kwang-Tae
    • Journal of Ginseng Research
    • /
    • 제14권2호
    • /
    • pp.310-316
    • /
    • 1990
  • This study was focused on the characterization of mitochondrial DNA (mtDNA) for molecular 9enetical approach of energy Production related mechanism in Panax ginseng. The simple and efficient method of mtDNA isolation from ginseng has been developed by modification of recently advanced methods. This procedure can successfully apply to mtDNA isolation of several plants. mtDNA of etiolated shoot and one-year root were digested with restriction endonucleases, but that of 6-year root not. Any difference was not observed in the restriction endonuclease digestion patterns among the ginseng variants. Molecular size of ginseng mtDNA was estimated at least 159 kb by the restriction endonuclease fragment analysis. The 4.5 kb extra band at the lane of EcoRII treatment could be observed in restriction patterns digested with the methylation sensitive endonucleases, BstN I and EcoRII. For construction of mitochondrial genomic library of ginseng, mtDNA was partially digested with EcoRl, and packaged with EMBL4 phage vector. Genomic library was screened and purified for further research including restriction mapping of ginseng mtDNA, and cloning of the genes. The gene of ATP synthase A subunit was cloned from the purified EMBL4 library clone No. 16. Now, clone No. 16 is subcloned for structure gene sequence analysis.

  • PDF