• Title/Summary/Keyword: genomic selection

Search Result 226, Processing Time 0.02 seconds

Genome-Wide Analysis of DNA Methylation before- and after Exercise in the Thoroughbred Horse with MeDIP-Seq

  • Gim, Jeong-An;Hong, Chang Pyo;Kim, Dae-Soo;Moon, Jae-Woo;Choi, Yuri;Eo, Jungwoo;Kwon, Yun-Jeong;Lee, Ja-Rang;Jung, Yi-Deun;Bae, Jin-Han;Choi, Bong-Hwan;Ko, Junsu;Song, Sanghoon;Ahn, Kung;Ha, Hong-Seok;Yang, Young Mok;Lee, Hak-Kyo;Park, Kyung-Do;Do, Kyoung-Tag;Han, Kyudong;Yi, Joo Mi;Cha, Hee-Jae;Ayarpadikannan, Selvam;Cho, Byung-Wook;Bhak, Jong;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • v.38 no.3
    • /
    • pp.210-220
    • /
    • 2015
  • Athletic performance is an important criteria used for the selection of superior horses. However, little is known about exercise-related epigenetic processes in the horse. DNA methylation is a key mechanism for regulating gene expression in response to environmental changes. We carried out comparative genomic analysis of genome-wide DNA methylation profiles in the blood samples of two different thoroughbred horses before and after exercise by methylated-DNA immunoprecipitation sequencing (MeDIP-Seq). Differentially methylated regions (DMRs) in the pre-and post-exercise blood samples of superior and inferior horses were identified. Exercise altered the methylation patterns. After 30 min of exercise, 596 genes were hypomethy-lated and 715 genes were hypermethylated in the superior horse, whereas in the inferior horse, 868 genes were hypomethylated and 794 genes were hypermethylated. These genes were analyzed based on gene ontology (GO) annotations and the exercise-related pathway patterns in the two horses were compared. After exercise, gene regions related to cell division and adhesion were hypermethylated in the superior horse, whereas regions related to cell signaling and transport were hypermethylated in the inferior horse. Analysis of the distribution of methylated CpG islands confirmed the hypomethylation in the gene-body methylation regions after exercise. The methylation patterns of transposable elements also changed after exercise. Long interspersed nuclear elements (LINEs) showed abundance of DMRs. Collectively, our results serve as a basis to study exercise-based reprogramming of epigenetic traits.

QTL Analysis of Seed and Growth Traits using RIL Population in Soybean (콩 종실 및 생육형질 연관 분자표지 탐색)

  • Kim, Jeong-Soon;Song, Mi-Hee;Lee, Janf-Yong;Ahn, Sang-Nag;Ku, Ja-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.53 no.1
    • /
    • pp.85-92
    • /
    • 2008
  • An RIL population from a Shinpaldalkong2/GC83006 cross was employed to identify quantitative trait loci (QTL) associated with agronomic traits in soybean. The genetic map consisted of 127 loci which covered about 3,000cM and were assigned into 20 linkage groups. Phenotypic data were collected for the following traits; plant height, leaf area, flowering time, pubescence color, seed coat color and hilum color in 2005. Seed weight was evaluated using seeds collected in 2003 to 2005 at Suwon and in 2005 at Pyeongchang and Miryang sites. Three QTLs were associated with 100-seed weight in the combined analysis across three years. Among the three QTLs related to seed weight, all GC83006 alleles on LG O ($R^2\;=\;12.5$), LG A1 ($R^2\;=\;10.1$) and LG C2 ($R^2\;=\;11.5$) increased the seed weight. A QTL conditioning plant height was linked to markers including Satt134 (LG C2, $R^2\;=\;25.4$), and the GC83006 allele increased plant height at this QTL locus. For two QTLs related to leaf area, 1aM on LG M ($R^2\;=\;10.0$) and laL on LG L ($R^2\;=\;8.6$), the Shinpaldalkong2 alleles had positive effect to increase the leaf area. Satt134 on LG C2 ($R^2\;=\;41.0$) was associated with QTL for days to flowering. Satt134 (LG C2) showed a linkage to a gene for pubescence color. Satt363 (LG C2) and Satt354 (LG I) were linked to the hilum color gene, and Sat077 (LG D1a) was linked to the seed coat color. The QTL conditioning plant height was in the similar genomic location as the QTLs for days to flowering in this population, indicating pleiotropic effect of one gene or the tight linkage of several genes. These linked markers would be useful in marker assisted selection for these traits in a soybean breeding program.

Single Nucleotide Polymorphisms (SNPs) Discovery in GHSR Gene and Their Association Analysis with Economic Traits in Korean Native Chickens (GHSR 유전자 내 유전변이의 탐색과 한국재래계의 성장 및 산란 특성에 미치는 연관성 분석)

  • Choi, So-Young;Hong, Min-Wook;Yang, Song-Yi;Kim, Chong-Dae;Jeong, Dong Kee;Hong, Yeong Ho;Lee, Sung-Jin
    • Korean Journal of Poultry Science
    • /
    • v.43 no.4
    • /
    • pp.273-279
    • /
    • 2016
  • Recently, it was reported that certain polymorphisms in the growth hormone secretagogue receptor gene (GHSR) are associated with the growth of chickens. However, the correlation between GHSR polymorphisms and economic traits has not been investigated in Korean native chickens (KNCs). Therefore, the objective of this study was to confirm the suitability of the GHSR gene as a candidate for genomic selection and identify a genetic marker for KNCs. A total of 220 KNCs from six breeds raised at the National Institute of Animal Science were genotyped for the c.739+726 SNP in the GHSR gene using polymerase chain reaction- restriction fragment length polymorphism (PCR-RFLP), and the sequence for a subset of 30 birds was analyzed using direct sequencing. The association between the SNP genotypes and the economic traits of the KNCs was analyzed using the statistical package for the social science (SPSS) software program. The association analysis between the c.739+726T>C SNP and economic traits revealed that the SNP was significantly associated with body weight at 150 and 270 days (BW150 and BW270, respectively) in all KNCs (p<0.01), BW150 in KNC (Gary) (p<0.05), and egg production number in KNC (White, p<0.05). In addition, the SNPs discovered using direct sequencing (513A>G, 517A>T) had a significant effect on the body weight and egg production traits (p<0.05). In conclusion, these results might be useful as a basis for studies on the improvement of KNC breeds. Furthermore, these results suggest that the SNPs (c.739+726T>C, 513A>G, and 517A>T) located in the GHSR gene could be useful molecular genetic markers for KNCs.

Current Status of Cattle Genome Sequencing and Analysis using Next Generation Sequencing (차세대유전체해독 기법을 이용한 소 유전체 해독 연구현황)

  • Choi, Jung-Woo;Chai, Han-Ha;Yu, Dayeong;Lee, Kyung-Tai;Cho, Yong-Min;Lim, Dajeong
    • Journal of Life Science
    • /
    • v.25 no.3
    • /
    • pp.349-356
    • /
    • 2015
  • Thanks to recent advances in next-generation sequencing (NGS) technology, diverse livestock species have been dissected at the genome-wide sequence level. As for cattle, there are currently four Korean indigenous breeds registered with the Domestic Animal Diversity Information System of the Food and Agricultural Organization of the United Nations: Hanwoo, Chikso, Heugu, and Jeju Heugu. These native genetic resources were recently whole-genome resequenced using various NGS technologies, providing enormous single nucleotide polymorphism information across the genomes. The NGS application further provided biological such that Korean native cattle are genetically distant from some cattle breeds of European origins. In addition, the NGS technology was successfully applied to detect structural variations, particularly copy number variations that were usually difficult to identify at the genome-wide level with reasonable accuracy. Despite the success, those recent studies also showed an inherent limitation in sequencing only a representative individual of each breed. To elucidate the biological implications of the sequenced data, further confirmatory studies should be followed by sequencing or validating the population of each breed. Because NGS sequencing prices have consistently dropped, various population genomic theories can now be applied to the sequencing data obtained from the population of each breed of interest. There are still few such population studies available for the Korean native cattle breeds, but this situation will soon be improved with the recent initiative for NGS sequencing of diverse native livestock resources, including the Korean native cattle breeds.

Generation of a Mammalian Gene Expression Vector Using Bovine Viral Diarrhea Virus (Bovine Vira1 Diarrhea Virus를 이용한 포유동물세포 발현벡터의 개발)

  • 이영민
    • Korean Journal of Microbiology
    • /
    • v.38 no.2
    • /
    • pp.86-95
    • /
    • 2002
  • As a result of genome projects, the research to elucidate the function of a protein of interest has recently been well-recognized. In order to facilitate functional genomics, a useful mammalian gene expression vector is required. Using an infectious CDNA clone of BVDV pNADLclns-, we have developed a mammalian gene expression vector. In this study, a replication-competent full-length infectious CDNA clone containing puremycin acetyltransferase (pac) gene (pNADLclns-/pac) was successfully generated. The viral RNA replication and viral protein NS3 synthesis were examined by detecting metabollically $^{32}P$-labelled genomic viral RNA and immunoblotting with a mouse anti-NS3 antibody. To generate viral replicon as an expression vector, we examine if the viral structural genes (C, E0, El, E2) are required for viral replication by deletion analysis. As a result, all of the structural proteins are dispensable for viral replication per se, but essential for infectious viral particle formation. Based on our deletion analysis, we have generated a replication-competent BVDV viral replicon (pNADLclns-/pac/${\Delta}S$), whose structural genes are all deleted. In addition to NADLclns- /pac/${\Delta}S$, NADLclns-/ luc/${\Delta}S$ viral replicon containing luciferase gene as a reporter was constructed and fecund to be replication-compotent in HeLa and BHK cells as well as MDBK cells. Therefore, BVDV viral replicon developed in our study will be a useful tool to express a protein of interest in various mammalian cells.

Estimation of Linkage Disequilibrium and Effective Population Size using Whole Genome Single Nucleotide Polymorphisms in Hanwoo (한우에서 전장의 유전체 정보를 활용한 연관불평형 및 유효집단크기 추정에 관한 연구)

  • Cho, Chung-Il;Lee, Joon-Ho;Lee, Deuk-Hwan
    • Journal of Life Science
    • /
    • v.22 no.3
    • /
    • pp.366-372
    • /
    • 2012
  • This study was conducted to estimate the extent of linkage disequilibrium (LD) and effective population size using whole genomic single nucleotide polymorphisms (SNP) genotyped by DNA chip in Hanwoo. Using the blood samples of 35 young bulls born from 2005 to 2008 and their progenies (N=253) in a Hanwoo nucleus population collected from Hanwoo Improvement Center, 51,582 SNPs were genotyped using Bovine SNP50 chips. A total of 40,851 SNPs were used in this study after elimination of SNPs with a missing genotyping rate of over 10 percent and monomorphic SNPs (10,730 SNPs). The total autosomal genome length, measured as the sum of the longest syntenic pairs of SNPs by chromosome, was 2,541.6 Mb (Mega base pairs). The average distances of all adjacent pairs by each BTA ranged from 0.55 to 0.74 cM. Decay of LD showed an exponential trend with physical distance. The means of LD ($r^2$) among syntenic SNP pairs were 0.136 at a range of 0-0.1 Mb in physical distance and 0.06 at a range of 0.1-0.2 Mb. When these results were used for Luo's formula, about 2,000 phenotypic records were found to be required to achieve power > 0.9 to detect 5% QTL in the population of Hanwoo. As a result of estimating effective population size by generation in Hanwoo, the estimated effective population size for the current status was 84 heads and the estimate of effective population size for 50 generations of ancestors was 1,150 heads. The average decreasing rates of effective population size by generation were 9.0% at about five generations and 17.3% at the current generation. The main cause of the rapid decrease in effective population size was considered to be the intensive use of a few prominent sires since the application of artificial insemination technology in Korea. To increase and/or sustain the effective population size, the selection of various proven bulls and mating systems that consider genetic diversity are needed.