• Title/Summary/Keyword: genome-wide DNA methylation profiling

Search Result 5, Processing Time 0.026 seconds

DNA Methylation Profiles of Blood Cells Are Distinct between Early-Onset Obese and Control Individuals

  • Rhee, Je-Keun;Lee, Jin-Hee;Yang, Hae Kyung;Kim, Tae-Min;Yoon, Kun-Ho
    • Genomics & Informatics
    • /
    • v.15 no.1
    • /
    • pp.28-37
    • /
    • 2017
  • Obesity is a highly prevalent, chronic disorder that has been increasing in incidence in young patients. Both epigenetic and genetic aberrations may play a role in the pathogenesis of obesity. Therefore, in-depth epigenomic and genomic analyses will advance our understanding of the detailed molecular mechanisms underlying obesity and aid in the selection of potential biomarkers for obesity in youth. Here, we performed microarray-based DNA methylation and gene expression profiling of peripheral white blood cells obtained from six young, obese individuals and six healthy controls. We observed that the hierarchical clustering of DNA methylation, but not gene expression, clearly segregates the obese individuals from the controls, suggesting that the metabolic disturbance that occurs as a result of obesity at a young age may affect the DNA methylation of peripheral blood cells without accompanying transcriptional changes. To examine the genome-wide differences in the DNA methylation profiles of young obese and control individuals, we identified differentially methylated CpG sites and investigated their genomic and epigenomic contexts. The aberrant DNA methylation patterns in obese individuals can be summarized as relative gains and losses of DNA methylation in gene promoters and gene bodies, respectively. We also observed that the CpG islands of obese individuals are more susceptible to DNA methylation compared to controls. Our pilot study suggests that the genome-wide aberrant DNA methylation patterns of obese individuals may advance not only our understanding of the epigenomic pathogenesis but also early screening of obesity in youth.

Genome-wide Analysis of Aberrant DNA Methylation for Identification of Potential Biomarkers in Colorectal Cancer Patients

  • Fang, Wei-Jia;Zheng, Yi;Wu, Li-Ming;Ke, Qing-Hong;Shen, Hong;Yuan, Ying;Zheng, Shu-Sen
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.13 no.5
    • /
    • pp.1917-1921
    • /
    • 2012
  • Background: Colorectal cancer is one of the leading causes of mortality worldwide. Genome wide analysis studies have identified sequence mutations causing loss-of-function that are associated with disease occurrence and severity. Epigenetic modifications, such DNA methylation, have also been implicated in many cancers but have yet to be examined in the East Asian population of colorectal cancer patients. Methods: Biopsies of tumors and matched non-cancerous tissue types were obtained and genomic DNA was isolated and subjected to the bisulphite conversion method for comparative DNA methylation analysis on the Illumina Infinium HumanMethylation27 BeadChip. Results: Totals of 258 and 74 genes were found to be hyper- and hypo-methylated as compared to the individual's matched control tissue. Interestingly, three genes that exhibited hypermethylation in their promoter regions, CMTM2, ECRG4, and SH3GL3, were shown to be significantly associated with colorectal cancer in previous studies. Using heatmap cluster analysis, eight hypermethylated and 10 hypomethylated genes were identified as significantly differentially methylated genes in the tumour tissues. Conclusions: Genome-wide methylation profiling facilitates rapid and simultaneous analysis of cancerous cells which may help to identify methylation markers with high sensitivity and specificity for diagnosis and prognosis. Our results show the promise of the microarray technology in identification of potential methylation biomarkers for colorectal cancers.

Recent Strategy for Superior Horses (우수 마 선택을 위한 최신 전략)

  • Gim, Jeong-An;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.855-867
    • /
    • 2016
  • The horse is relatively earlier domesticated animal species. Domesticated horses have been selected for their ability of racing, robustness, and disease-resistance. As a result, the thoroughbred horse genome has been condensed many genotypes related to exercise ability. In recent years, with the advent of NGS technologies, many studies were concentrated on finding superior genetic species in the horse genome in terms of genomics. Consequently, GWAS (Genome-wide Association study) is applied to horse genome, then genetic marker is revealed for superior racing ability. In addition, RNA-Seq is utilized as a method for analyze of whole transcript profiling in specific samples. By using this approach, specific gene expression patterns and transcript sequences can be revealed in various samples such as each individual, before and after exercise state, and each tissue. DNA methylation, a strong factor that regulate gene expression without the change of DNA sequence, have got a lot of attention. In horse genome, exercise- or individual-specific DNA methylation patterns were detected, and could be useful to develop selective marker of superior horses. MicroRNAs inhibit gene expression, and transposable elements accounted for half of the mammalian genome. These two elements are the crucial factors in functional genomics, and could be applied to the selection of superior horses. As the functional genomics and epigenomics advance, then these technologies introduced in this paper were applied to select superior horses. In this paper, the studies for selection of superior horses through genetic technologies, and development possibilities of these studies were discussed.

Epigenetic insights into colorectal cancer: comprehensive genome-wide DNA methylation profiling of 294 patients in Korea

  • Soobok Joe;Jinyong Kim;Jin-Young Lee;Jongbum Jeon;Iksu Byeon;Sae-Won Han;Seung-Bum Ryoo;Kyu Joo Park;Sang-Hyun Song;Sheehyun Cho;Hyeran Shim;Hoang Bao Khanh Chu;Jisun Kang;Hong Seok Lee;DongWoo Kim;Young-Joon Kim;Tae-You Kim;Seon-Young Kim
    • BMB Reports
    • /
    • v.56 no.10
    • /
    • pp.563-568
    • /
    • 2023
  • DNA methylation regulates gene expression and contributes to tumorigenesis in the early stages of cancer. In colorectal cancer (CRC), CpG island methylator phenotype (CIMP) is recognized as a distinct subset that is associated with specific molecular and clinical features. In this study, we investigated the genome-wide DNA methylation patterns among patients with CRC. The methylation data of 1 unmatched normal, 142 adjacent normal, and 294 tumor samples were analyzed. We identified 40,003 differentially methylated positions with 6,933 (79.8%) hypermethylated and 16,145 (51.6%) hypomethylated probes in the genic region. Hypermethylated probes were predominantly found in promoter-like regions, CpG islands, and N shore sites; hypomethylated probes were enriched in open-sea regions. CRC tumors were categorized into three CIMP subgroups, with 90 (30.6%) in the CIMP-high (CIMP-H), 115 (39.1%) in the CIMP-low (CIMP-L), and 89 (30.3%) in the non-CIMP group. The CIMP-H group was associated with microsatellite instability-high tumors, hypermethylation of MLH1, older age, and right-sided tumors. Our results showed that genome-wide methylation analyses classified patients with CRC into three subgroups according to CIMP levels, with clinical and molecular features consistent with previous data.

Hemicastration induced spermatogenesis-related DNA methylation and gene expression changes in mice testis

  • Wang, Yixin;Jin, Long;Ma, Jideng;Chen, Li;Fu, Yuhua;Long, Keren;Hu, Silu;Song, Yang;Shang, Dazhi;Tang, Qianzi;Wang, Xun;Li, Xuewei;Li, Mingzhou
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.2
    • /
    • pp.189-197
    • /
    • 2018
  • Objective: Hemicastration is a unilateral orchiectomy to remove an injured testis, which can induce hormonal changes and compensatory hypertrophy of the remaining testis, and may influence spermatogenesis. However, the underlying molecular mechanisms are poorly understood. Here, we investigated the impact of hemicastration on remaining testicular function. Methods: Prepubertal mice (age 24 days) were hemicastrated, and their growth was monitored until they reached physical maturity (age 72 days). Subsequently, we determined testis DNA methylation patterns using reduced representation bisulfite sequencing of normal and hemicastrated mice. Moreover, we profiled the testicular gene expression patterns by RNA sequencing (RNA-seq) to examine whether methylation changes affected gene expression in hemicastrated mice. Results: Hemicastration did not significantly affect growth or testosterone (p>0.05) compared with control. The genome-wide DNA methylation pattern of remaining testis suggested that substantial genes harbored differentially methylated regions (1,139) in gene bodies, which were enriched in process of protein binding and cell adhesion. Moreover, RNA-seq results indicated that 46 differentially expressed genes (DEGs) involved in meiotic cell cycle, synaptonemal complex assembly and spermatogenesis were upregulated in the hemicastration group, while 197 DEGs were downregulated, which were related to arachidonic acid metabolism. Integrative analysis revealed that proteasome 26S subunit ATPase 3 interacting protein gene, which encodes a protein crucial for homologous recombination in spermatocytes, exhibited promoter hypomethylation and higher expression level in hemicastrated mice. Conclusion: Global profiling of DNA methylation and gene expression demonstrated that hemicastration-induced compensatory response maintained normal growth and testicular morphological structure in mice.