• Title/Summary/Keyword: genome wide association

Search Result 331, Processing Time 0.029 seconds

Exploratory Investigation of Genetic Associations with Basal Cell Carcinoma Risk: Genome-Wide Association Study in Jeju Island, Korea

  • Yun, Byung Min;Song, Jung-Kook;Lee, Ji-Young
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.17
    • /
    • pp.7443-7447
    • /
    • 2014
  • Aim: Little is known about the genetic associations with Basal cell carcinoma (BCC) risk in non-Caucasian populations, in which BCC is rare, as in Korea. We here conducted a pilot genome-wide association study (GWAS) in 12 patients and 48 standard controls. Method: A total of 263,511 SNPs were analyzed with the Illumina HumanOmni1 Quad v1.0 DNA Analysis BeadChip for cases and Korean HapMap 570K for controls. Results: SNP-based analyses, based on the allele genetic model with adjustment for sex and age showed suggestive associations with BCC risk for 6 SNPs with a P-value (P < 0.0005). However, these associations were not statistically significant after Bonferroni correction: rs1040503, rs2216491, rs13407683, rs4751072, rs9891263, and rs1368474. In addition, results from gene-based analyses showed suggestive associations with BCC risk for 33 candidate genes with a P-value (P <0.0005). Consistent with previous GWAS and replication studies in Caucasian populations, PADI6, RHOU and SLC45A2 were identified as having null associations with BCC (P > 0.05), likely due to the smaller sample size. Conclusions: Although this was a small-scale negative study, to our knowledge, we have conducted the first GWAS for BCC risk in an Asian population. Further large studies in non-Caucasian populations are required to achieve statistical significance and confirm these findings.

Genome-Wide Association Studies Associated with Backfat Thickness in Landrace and Yorkshire Pigs

  • Lee, Young-Sup;Shin, Donghyun
    • Genomics & Informatics
    • /
    • v.16 no.3
    • /
    • pp.59-64
    • /
    • 2018
  • Although pork quality traits are important commercially, genome-wide association studies (GWASs) have not well considered Landrace and Yorkshire pigs worldwide. Landrace and Yorkshire pigs are important pork-providing breeds. Although quantitative trait loci of pigs are well-developed, significant genes in GWASs of pigs in Korea must be studied. Through a GWAS using the PLINK program, study of the significant genes in Korean pigs was performed. We conducted a GWAS and surveyed the gene ontology (GO) terms associated with the backfat thickness (BF) trait of these pigs. We included the breed information (Yorkshire and Landrace pigs) as a covariate. The significant genes after false discovery rate (<0.01) correction were AFG1L, SCAI, RIMS1, and SPDEF. The major GO terms for the top 5% of genes were related to neuronal genes, cell morphogenesis and actin cytoskeleton organization. The neuronal genes were previously reported as being associated with backfat thickness. However, the genes in our results were novel, and they included ZNF280D, BAIAP2, LRTM2, GABRA5, PCDH15, HERC1, DTNBP1, SLIT2, TRAPPC9, NGFR, APBB2, RBPJ, and ABL2. These novel genes might have roles in important cellular and physiological functions related to BF accumulation. The genes related to cell morphogenesis were NOX4, MKLN1, ZNF280D, BAIAP2, DNAAF1, LRTM2, PCDH15, NGFR, RBPJ, MYH9, APBB2, DTNBP1, TRIM62, and SLIT2. The genes that belonged to actin cytoskeleton organization were MKLN1, BAIAP2, PCDH15, BCAS3, MYH9, DTNBP1, ABL2, ADD2, and SLIT2.

Analysis of the relationship between the end weight trait and the gene ADGRL2 in purebred landrace pigs using a Genome-wide association study

  • Kang, Ho-Chan;Kim, Hee-Sung;Lee, Jae-Bong;Yoo, Chae-Kung;Choi, Tae-Jeong;Lim, Hyun-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.238-247
    • /
    • 2018
  • The overall consumption of meat is increasing as the level of national income increases. The end weight is a trait closely associated with dressed meat. Genome-wide association study (GWAS) is an effective method of analyzing genetic variation and gene identification associated with a number of natural alternative traits because it can detect variations. So this paper did a GWAS analysis to identity the location on the genome related to the end weight in purebred landrace pigs and to explore the relevant candidate gene. This study identified a significant single nucleotide poly morphism (SNP) marker in chromosome 6 (ASGA0029422, $p=1.22{\times}10^{-6}$). Adhesion G protein-coupled receptor L2 (ADGRL2) was found to be the candidate gene at the identified SNP marker location. ADGRL2 genes have been found to be associated with cell development in relation to the external and internal environment of a cell. In addition, genotype and statistical analyses were done on nine variations on the exon of ADGRL2. The results show that the SNP marker (ASGA0029422, $p=1.32{\times}10^{-6}$) was significant, but the significance of the nine variations on the ADGRL2 exon was not verified. However, by performing further experiments and functional studies on other SNPs showing possible genetic ADGRL-Exon mutations, objects with high associations of high-end weights can be selected.

Pathway Analysis of Metabolic Syndrome Using a Genome-Wide Association Study of Korea Associated Resource (KARE) Cohorts

  • Shim, Unjin;Kim, Han-Na;Sung, Yeon-Ah;Kim, Hyung-Lae
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.195-202
    • /
    • 2014
  • Metabolic syndrome (MetS) is a complex disorder related to insulin resistance, obesity, and inflammation. Genetic and environmental factors also contribute to the development of MetS, and through genome-wide association studies (GWASs), important susceptibility loci have been identified. However, GWASs focus more on individual single-nucleotide polymorphisms (SNPs), explaining only a small portion of genetic heritability. To overcome this limitation, pathway analyses are being applied to GWAS datasets. The aim of this study is to elucidate the biological pathways involved in the pathogenesis of MetS through pathway analysis. Cohort data from the Korea Associated Resource (KARE) was used for analysis, which include 8,842 individuals (age, $52.2{\pm}8.9years$ ; body mass index, $24.6{\pm}3.2kg/m^2$). A total of 312,121 autosomal SNPs were obtained after quality control. Pathway analysis was conducted using Meta-analysis Gene-Set Enrichment of Variant Associations (MAGENTA) to discover the biological pathways associated with MetS. In the discovery phase, SNPs from chromosome 12, including rs11066280, rs2074356, and rs12229654, were associated with MetS (p < $5{\times}10^{-6}$), and rs11066280 satisfied the Bonferroni-corrected cutoff (unadjusted p < $1.38{\times}10^{-7}$, Bonferroni-adjusted p < 0.05). Through pathway analysis, biological pathways, including electron carrier activity, signaling by platelet-derived growth factor (PDGF), the mitogen-activated protein kinase kinase kinase cascade, PDGF binding, peroxisome proliferator-activated receptor (PPAR) signaling, and DNA repair, were associated with MetS. Through pathway analysis of MetS, pathways related with PDGF, mitogen-activated protein kinase, and PPAR signaling, as well as nucleic acid binding, protein secretion, and DNA repair, were identified. Further studies will be needed to clarify the genetic pathogenesis leading to MetS.

Genome-wide association study for the free amino acid and nucleotide components of breast meat in an F2 crossbred chicken population

  • Minjun Kim;Eunjin Cho;Jean Pierre Munyaneza;Thisarani Kalhari Ediriweera;Jihye Cha;Daehyeok Jin;Sunghyun Cho;Jun Heon Lee
    • Journal of Animal Science and Technology
    • /
    • v.65 no.1
    • /
    • pp.57-68
    • /
    • 2023
  • Flavor is an important sensory trait of chicken meat. The free amino acid (FAA) and nucleotide (NT) components of meat are major factors affecting meat flavor during the cooking process. As a genetic approach to improve meat flavor, we performed a genome-wide association study (GWAS) to identify the potential candidate genes related to the FAA and NT components of chicken breast meat. Measurements of FAA and NT components were recorded at the age of 10 weeks from 764 and 767 birds, respectively, using a White leghorn and Yeonsan ogye crossbred F2 chicken population. For genotyping, we used 60K Illumina single-nucleotide polymorphism (SNP) chips. We found a total of nine significant SNPs for five FAA traits (arginine, glycine, lysine, threonine content, and the essential FAAs and one NT trait (inosine content), and six significant genomic regions were identified, including three regions shared among the essential FAAs, arginine, and inosine content traits. A list of potential candidate genes in significant genomic regions was detected, including the KCNRG, KCNIP4, HOXA3, THSD7B, and MMUT genes. The essential FAAs had significant gene regions the same as arginine. The genes related to arginine content were involved in nitric oxide metabolism, while the inosine content was possibly affected by insulin activity. Moreover, the threonine content could be related to methylmalonyl-CoA mutase. The genes and SNPs identified in this study might be useful markers in chicken selection and breeding for chicken meat flavor.

Recent Strategy for Superior Horses (우수 마 선택을 위한 최신 전략)

  • Gim, Jeong-An;Kim, Heui-Soo
    • Journal of Life Science
    • /
    • v.26 no.7
    • /
    • pp.855-867
    • /
    • 2016
  • The horse is relatively earlier domesticated animal species. Domesticated horses have been selected for their ability of racing, robustness, and disease-resistance. As a result, the thoroughbred horse genome has been condensed many genotypes related to exercise ability. In recent years, with the advent of NGS technologies, many studies were concentrated on finding superior genetic species in the horse genome in terms of genomics. Consequently, GWAS (Genome-wide Association study) is applied to horse genome, then genetic marker is revealed for superior racing ability. In addition, RNA-Seq is utilized as a method for analyze of whole transcript profiling in specific samples. By using this approach, specific gene expression patterns and transcript sequences can be revealed in various samples such as each individual, before and after exercise state, and each tissue. DNA methylation, a strong factor that regulate gene expression without the change of DNA sequence, have got a lot of attention. In horse genome, exercise- or individual-specific DNA methylation patterns were detected, and could be useful to develop selective marker of superior horses. MicroRNAs inhibit gene expression, and transposable elements accounted for half of the mammalian genome. These two elements are the crucial factors in functional genomics, and could be applied to the selection of superior horses. As the functional genomics and epigenomics advance, then these technologies introduced in this paper were applied to select superior horses. In this paper, the studies for selection of superior horses through genetic technologies, and development possibilities of these studies were discussed.

Statistical models and computational tools for predicting complex traits and diseases

  • Chung, Wonil
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.36.1-36.11
    • /
    • 2021
  • Predicting individual traits and diseases from genetic variants is critical to fulfilling the promise of personalized medicine. The genetic variants from genome-wide association studies (GWAS), including variants well below GWAS significance, can be aggregated into highly significant predictions across a wide range of complex traits and diseases. The recent arrival of large-sample public biobanks enables highly accurate polygenic predictions based on genetic variants across the whole genome. Various statistical methodologies and diverse computational tools have been introduced and developed to computed the polygenic risk score (PRS) more accurately. However, many researchers utilize PRS tools without a thorough understanding of the underlying model and how to specify the parameters for the best performance. It is advantageous to study the statistical models implemented in computational tools for PRS estimation and the formulas of parameters to be specified. Here, we review a variety of recent statistical methodologies and computational tools for PRS computation.

Epidemiological and Genome-Wide Association Study of Gastritis or Gastric Ulcer in Korean Populations

  • Oh, Sumin;Oh, Sejong
    • Genomics & Informatics
    • /
    • v.12 no.3
    • /
    • pp.127-133
    • /
    • 2014
  • Gastritis is a major disease that has the potential to grow as gastric cancer. Gastric cancer is a very common cancer, and it is related to a very high mortality rate in Korea. This disease is known to have various reasons, including infection with Helicobacter pylori, dietary habits, tobacco, and alcohol. The incidence rate of gastritis has reported to differ between age, population, and gender. However, unlike other factors, there has been no analysis based on gender. So, we examined the high risk factors of gastritis in each gender in the Korean population by focusing on sex. We performed an analysis of 120 clinical characteristics and genome-wide association studies (GWAS) using 349,184 single-nucleotide polymorphisms from the results of Anseong and Ansan cohort study in the Korea Association Resource (KARE) project. As the result, we could not prove a strong relation with these factors and gastritis or gastric ulcer in the GWAS. However, we confirmed several already-known risk factors and also found some differences of clinical characteristics in each gender using logistic regression. As a result of the logistic regression, a relation with hyperlipidemia, coronary artery disease, myocardial infarction, hyperlipidemia therapy, hypotensive or antihypotensive drug, diastolic blood pressure, and gastritis was seen in males; the results of this study suggest that vascular disease has a potential association with gastritis in males.

A Genome Wide Association Study on Age at First Calving Using High Density Single Nucleotide Polymorphism Chips in Hanwoo (Bos taurus coreanae)

  • Hyeong, K.E.;Iqbal, A.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1406-1410
    • /
    • 2014
  • Age at first calving is an important trait for achieving earlier reproductive performance. To detect quantitative trait loci (QTL) for reproductive traits, a genome wide association study was conducted on the 96 Hanwoo cows that were born between 2008 and 2010 from 13 sires in a local farm (Juk-Am Hanwoo farm, Suncheon, Korea) and genotyped with the Illumina 50K bovine single nucleotide polymorphism (SNP) chips. Phenotypes were regressed on additive and dominance effects for each SNP using a simple linear regression model after the effects of birth-year-month and polygenes were considered. A forward regression procedure was applied to determine the best set of SNPs for age at first calving. A total of 15 QTL were detected at the comparison-wise 0.001 level. Two QTL with strong statistical evidence were found at 128.9 Mb and 111.1 Mb on bovine chromosomes (BTA) 2 and 7, respectively, each of which accounted for 22% of the phenotypic variance. Also, five significant SNPs were detected on BTAs 10, 16, 20, 26, and 29. Multiple QTL were found on BTAs 1, 2, 7, and 14. The significant QTLs may be applied via marker assisted selection to increase rate of genetic gain for the trait, after validation tests in other Hanwoo cow populations.

Gene-set based genome-wide association analysis for the speed of sound in two skeletal sites of Korean women

  • Kwon, Ji-Sun;Kim, Sangsoo
    • BMB Reports
    • /
    • v.47 no.6
    • /
    • pp.348-353
    • /
    • 2014
  • The speed of sound (SOS) value is an indicator of bone mineral density (BMD). Previous genome-wide association (GWA) studies have identified a number of genes, whose variations may affect BMD levels. However, their biological implications have been elusive. We re-analyzed the GWA study dataset for the SOS values in skeletal sites of 4,659 Korean women, using a gene-set analysis software, GSA-SNP. We identified 10 common representative GO terms, and 17 candidate genes between these two traits (PGS < 0.05). Implication of these GO terms and genes in the bone mechanism is well supported by the literature survey. Interestingly, the significance levels of some member genes were inversely related, in several gene-sets that were shared between two skeletal sites. This implies that biological process, rather than SNP or gene, is the substantial unit of genetic association for SOS in bone. In conclusion, our findings may provide new insights into the biological mechanisms for BMD.