• Title/Summary/Keyword: genome walking

Search Result 24, Processing Time 0.018 seconds

Expression of GFP Gene Driven by the Olive Flounder (Paralichthys olivaceus) hsc70 Promoter in Trangenic Medaka (Oryzias latipes) (넙치 (Paralichthys olivaceus) 열충격 유전자 hsp70 조절부위에 의한 형광단백질의 발현)

  • Lee, Jeong-Ho;Kim, Jong-Hyun;Noh, Jae Koo;Kim, Hyun Chul;Kim, Woo-Jin;Kim, Young-Ok;Kim, Kyung-Kil
    • Korean Journal of Ichthyology
    • /
    • v.19 no.4
    • /
    • pp.266-273
    • /
    • 2007
  • Heat shock proteins (HSPs) are a family of highly conserved proteins playing an important role in the functioning of unstressed and stressed cells. The HSP70 family, the most widely studied of the hsps, is constitutively expressed (hsc70) in unstressed cells and is also induced in response to stressors (hsp70), especially those affecting the protein machinery. The HSP/HSC70 proteins act as molecular chaperones and are crucial for protein functioning, including folding, intracellular localization, regulation, secretion, and protein degradation. Here, we report the identification and characterization of the putative amino acid sequence deduced from one cDNA clone identified as heat shock protein 70. The alignment showed that the putative sequence is 100% identical to the heat shock protein 70 cognate (HSC 70) of olive flounder. The 5'-flanking region sequence (approximately 1 kb) ahead of the hsc70 gene was cloned by genome walking and a putative core promoter region and transcription elements were identified. We characterized the promoter of the olive flounder hsc70 gene by examining the ability of 5'-upstream fragments to drive expression of green fluorescent protein (GFP) in live embryos.

Activation of Barley S-Adenosylmethionine Synthetase1 Gene Promoter in Response to Phytohormones and Abiotic Stresses

  • Kim, Jae-Yoon;Kim, Dae-Yeon;Jung, Je-Hyeong;Hong, Min-Jeong;Heo, Hwa-Young;Johnson, Jerry W.;Kim, Tae-Ho;Seo, Yong-Weon
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.1
    • /
    • pp.50-56
    • /
    • 2007
  • Barley S-adenosylmethionine synthetase1 gene, which was differentially expressed in seed development of extra early barley, was regulated by the phytohormones and abiotic stresses. In order to identify the regulation regions which were involved in transcriptional control of the phytohormones and abiotic stresses, we isolated 1459 bp fragment of HvSAMS1 gene promoter using genome walking strategy and deletion series were constructed. Deleted upstream fragments(-1459, -1223, -999, -766, -545, -301 bp) were fused to the GUS reporter gene and evaluated via Agrobacterium-mediated transient expression assay. Increased GUS activity of HvSMAS1 promoter -301/GUS construct under each of NaCl, $GA_3$, ABA and ethylene application was found. However, GUS activity was negligible in the leaves transformed with the HvSMAS1 promoter(-1459, -1223, -999, -766 and -545)/GUS constructs. No significant induction of GUS activity was observed for the ethionine and spermidine treatments. In order to locate promoter sequence of the HvSAMS1 gene that was critical for the activation of gene expression, deletion and addition promoter derivatives(+, includes 43 bp of 5' ORF) of the HvSAMS1 gene fused to the GUS reporter gene were applied. The tobacco leaves which harbored the additional HvSAMS1 promoter(-1459+, -1459 to -546, -545+ and -301+)/GUS construct did not significantly induce GUS activity as compared to the HvSAMS1 promoter(-1459, -545 and -301)/GUS constructs under each of NaCl, ABA and $GA_3$ treatment. However, the GUS activity was high in the tobacco leaves which harboring the -211 to -141 regions of the HvSAMS1 promoter. This result suggested that HvSAMS1 gene expression might be regulated by this region(from -211 to -141).

  • PDF

Alkaliphilic Endoxylanase from Lignocellulolytic Microbial Consortium Metagenome for Biobleaching of Eucalyptus Pulp

  • Weerachavangkul, Chawannapak;Laothanachareon, Thanaporn;Boonyapakron, Katewadee;Wongwilaiwalin, Sarunyou;Nimchua, Thidarat;Eurwilaichitr, Lily;Pootanakit, Kusol;Igarashi, Yasuo;Champreda, Verawat
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.12
    • /
    • pp.1636-1643
    • /
    • 2012
  • Enzymatic pre-bleaching by modification of pulp fibers with xylanases is an attractive approach to reduce the consumption of toxic bleaching chemicals in the paper industry. In this study, an alkaliphilic endoxylanase gene was isolated from metagenomic DNA of a structurally stable thermophilic lignocellulose-degrading microbial consortium using amplification with conserved glycosyl hydrolase family 10 primers and subsequent genome walking. The full-length xylanase showed 78% sequence identity to an endo-${\beta}$-1,4-xylanase of Clostridium phytofermentans and was expressed in a mature form with an N-terminal His6 tag fusion in Escherichia coli. The recombinant xylanase Xyn3F was thermotolerant and alkaliphilic, working optimally at $65-70^{\circ}C$ with an optimal pH at 9-10 and retaining >80% activity at pH 9, $60^{\circ}C$ for 1 h. Xyn3F showed a $V_{max}$ of 2,327 IU/mg and $K_m$ of 3.5 mg/ml on birchwood xylan. Pre-bleaching of industrial eucalyptus pulp with no prior pH adjustment (pH 9) using Xyn3F at 50 IU/g dried pulp led to 4.5-5.1% increase in final pulp brightness and 90.4-102.4% increase in whiteness after a single-step hypochlorite bleaching over the untreated pulp, which allowed at least 20% decrease in hypochlorite consumption to achieve the same final bleaching indices. The alkaliphilic xylanase is promising for application in an environmentally friendly bleaching step of kraft and soda pulps with no requirement for pH adjustment, leading to improved economic feasibility of the process.

Overcoming taxonomic challenges in DNA barcoding for improvement of identification and preservation of clariid catfish species

  • Piangjai Chalermwong;Thitipong Panthum;Pish Wattanadilokcahtkun;Nattakan Ariyaraphong;Thanyapat Thong;Phanitada Srikampa;Worapong Singchat;Syed Farhan Ahmad;Kantika Noito;Ryan Rasoarahona;Artem Lisachov;Hina Ali;Ekaphan Kraichak;Narongrit Muangmai;Satid Chatchaiphan6;Kednapat Sriphairoj;Sittichai Hatachote;Aingorn Chaiyes;Chatchawan Jantasuriyarat;Visarut Chailertlit;Warong Suksavate;Jumaporn Sonongbua;Witsanu Srimai;Sunchai Payungporn;Kyudong Han;Agostinho Antunes;Prapansak Srisapoome;Akihiko Koga;Prateep Duengkae;Yoichi Matsuda;Uthairat Na-Nakorn;Kornsorn Srikulnath
    • Genomics & Informatics
    • /
    • v.21 no.3
    • /
    • pp.39.1-39.15
    • /
    • 2023
  • DNA barcoding without assessing reliability and validity causes taxonomic errors of species identification, which is responsible for disruptions of their conservation and aquaculture industry. Although DNA barcoding facilitates molecular identification and phylogenetic analysis of species, its availability in clariid catfish lineage remains uncertain. In this study, DNA barcoding was developed and validated for clariid catfish. 2,970 barcode sequences from mitochondrial cytochrome c oxidase I (COI) and cytochrome b (Cytb) genes and D-loop sequences were analyzed for 37 clariid catfish species. The highest intraspecific nearest neighbor distances were 85.47%, 98.03%, and 89.10% for COI, Cytb, and D-loop sequences, respectively. This suggests that the Cytb gene is the most appropriate for identifying clariid catfish and can serve as a standard region for DNA barcoding. A positive barcoding gap between interspecific and intraspecific sequence divergence was observed in the Cytb dataset but not in the COI and D-loop datasets. Intraspecific variation was typically less than 4.4%, whereas interspecific variation was generally more than 66.9%. However, a species complex was detected in walking catfish and significant intraspecific sequence divergence was observed in North African catfish. These findings suggest the need to focus on developing a DNA barcoding system for classifying clariid catfish properly and to validate its efficacy for a wider range of clariid catfish. With an enriched database of multiple sequences from a target species and its genus, species identification can be more accurate and biodiversity assessment of the species can be facilitated.