• Title/Summary/Keyword: genetic traits

Search Result 1,211, Processing Time 0.029 seconds

Association of SNP Markers on Chromosomes 3 and 9 with Body Weight in Jeju Horses (제주마에서 3번 및 9번 염색체상의 단일염기변이와 생체중과의 관련성 연구)

  • Kim, Nam Young;Yang, Young Hoon;Park, Nam Geon;Yang, Byoung Chul;Son, Jun Kyu;Shin, Sang Min;Woo, Jae Hoon;Shin, Moon Cheol;Yoo, Ji Hyun;Hong, Hyun Ju;Park, Hee Bok
    • Journal of Life Science
    • /
    • v.28 no.7
    • /
    • pp.795-801
    • /
    • 2018
  • This study was conducted to investigate the association of single nucleotide polymorphism (SNP) markers on equine chromosomes (ECA) 3 and 9 with body weight in Jeju horses. We used DNA samples and body weight data of 320 horses provided by the Livestock Promotion Agency, Jeju Special Self-Governing Province, and the Korean Racing Association, respectively. We genotyped all the experimental animals using nine SNP markers located on ECA 3 (BIEC2-808466, BIEC2-808543, BIEC2-808967, and BIEC2-809370) and ECA 9 (BIEC2-1105370, BIEC2-1105372, BIEC2-1105377, BIEC21105505, and BIEC2-1105840). These markers were selected due to their effects on body conformation traits in horses. The joint effect of the genotypes of the two SNP markers (BIEC2-808467 and BIEC2-1105377) regarding body weight were also evaluated. The estimated breeding value (EBV) of body weight was obtained as the dependent variable for association analyses using a linear mixed model. Significant associations were detected between SNP markers (BIEC2-808543, BIEC2-808967, BIEC2-809370, BIEC2-1105370, BIEC2-1105372, and BIEC2-1105377) and the body weight EBV. In addition, the joint genotype effect of the BIEC2-808467 and BIEC2-1105377 on the body weight EBV was significant. These results indicate that the SNP markers, which showed their significant effects on body conformation, can be used as genetic markers to improve the efficiency of the selective breeding program for the body weight traits in Jeju horses.

Characterization of Grain Amino Acid Composition and Proteome Profile of a High-lysine Barley Mutant Line M98 (고-Lysine 보리 돌연변이 계통 M98 종실의 아미노산 조성 및 Proteome Profile 특성)

  • Kim, Dea-Wook;Kim, Hong-Sik;Park, Hyoung-Ho;Hwang, Jong-Jin;Kim, Sun-Lim;Lee, Jae-Eun;Jung, Gun-Ho;Hwang, Tae-Young;Kim, Jung-Tae;Kim, Si-Ju;Rakwal, Randeep;Kwon, Young-Up
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.57 no.2
    • /
    • pp.171-181
    • /
    • 2012
  • Lysine is the first limiting essential amino acid in cereals for humans and monogastric animals, although its content is generally low. A chemically induced high-lysine barley mutant, M98, has an agronomically undesirable shrunken endosperm trait. In order to obtain detailed insight into the atypical traits of M98 grains, we characterized amino acid composition and protein profiles of M98 and its parent cultivar Chalssalbori. Among a total of 16 amino acids, the percentage of each of the 7 amino acids, including lysine, was 1.2~1.8 times higher in M98, comparing to Chalssalbori. The percentage of proline and its precursor, glutamic acid, in M98 was about the half of that of the amino acids in Chalssalbori, but arginine synthesized from glutamic acid was 1.8 times higher in M98, compared that in the parent cultivar. Theses results indicated that the mutation in M98 grains might alter the proportion of amino acids linked to each other in a biosynthetic pathway. A comparison of grain proteome profiles between Chalssalbori and M98 revealed 70 differentially expressed protein spots, where 45 protein spots were up-regulated and 25 protein spots down-regulated in M98 compared to those in Chalssalbori. Of these changed protein spots, 53 were identified using nano-electrospray ionization liquid chromatography mass spectrometry. Most of these identified proteins were involved in various biological processes. In particular, 28 protein spots such as ${\beta}$-amylase, serpins and B3-hordein were identified as proteins associated with the atypical traits of M98. It was thought that a genetic study on the unique protein profile of M98 would be needed to develop an agronomically feasible barley cultivar with high-lysine trait.

Distributional Characteristics and Evaluation of the Population Sustainability, Factors Related to Vulnerability for a Polygonatum stenophyllum Maxim. (층층둥굴레(Polygonatum stenophyllum Maxim.)의 분포특성과 개체군의 위협요인 및 지속가능성 평가)

  • Kim, Young-Chul;Chae, Hyun-Hee;Ahn, Won-Gyeong;Lee, Kyu-Song;Nam, Gi-Heum;Kwak, Myoung-Hai
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.3
    • /
    • pp.303-320
    • /
    • 2019
  • Plants interact with various biotic and abiotic environmental factors. It requires much information to understand the traits of a plant species. A shortage of information would restrict the assessment, especially in the evaluation of what kind of factors influence a plant species to face extinction. Polygonatum stenophyllum Maxim. is one of the northern plants of which Korea is the southern distribution edge. The Korean Ministry of Environment had designated it to be the endangered species until December 2015. Although it is comparatively widespread, and a large population has recently been reported, it is assessed to be vulnerable due to the low population genetic diversity. This study evaluated the current distribution of Polygonatum stenophyllum Maxim. We investigated the vegetational environment, population structures, phenology, soil environment, and self-incompatibility based on the results. Lastly, we evaluated the current threats observed in the habitats. The habitats tended to be located in the areas where the masses at the edge of the stream accumulated except for those that were located on slopes of some mountainous areas. Most of them showed a stable population structure and had re-established or recruited seedlings. Polygonatum stenophyllum Maxim. had the difference in time when the shoots appeared above the ground depending on the depth of the rhizome located in the underground. In particular, the seedlings and juveniles had their rhizome located shallow in the soil. Visits by pollinator insects and success in pollination were crucial factors for bearing of fruits by Polygonatum stenophyllum Maxim. The threats observed in the habitat of Polygonatum stenophyllum Maxim. included the expansion of cultivated land, construction of new buildings, and construction of river banks and roads. Despite such observed risk factors, it is not likely that there would be rapid population reduction or extinction because of its widespread distribution with the total population of more than 2.7 million individuals and the new populations established by the re-colonization.

Effect of Gamma Rays on the Growth Performance of Bangladesh Clone Tea

  • Ali, M. Aslam;Samad, M. A.;Amin, M. K.
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.1
    • /
    • pp.66-70
    • /
    • 2005
  • The experiment was carried out to investigate the effects of gamma radiation on the early growth performance and physiological traits of BT2 clone tea, the most promising cultivar released by Bangladesh Tea Research Institute. The fresh shoot cuttings were irradiated with seven different levels of gamma radiation such as 0, 10, 20, 30, 40, 50 and 60 Gy from Cobalt 60Co source (Dept. of PlantBreeding, Bangladesh Institute of Nuclear Agriculture). Thereafter, the irradiated shoot cuttings were planted in polythene bags and kept under natural conditions. It was observed that callusing was initiated from 8th weeks after placement of tea shoot cuttings in the polythene bags and completed by 12th weeks. The morphological growth of tea shoot cuttings were recorded under varying levels of gamma radiation and growth stages. It was observed that the number of leaves, number of primary branches, base diameter, root length and total leaf area per plant significantly increased with the progress of time and increasing levels of gamma radiation, however, the plant height showed decreasing trend with the increasing levels of gamma radiation, which could be due to the change in chromosomal structure and genetic makeup. After 56 weeks of planting, the plant height, the number of leaves and primary branches per plant, base diameter, root length and total leaf area per plant recorded were 65.70 cm, 30.67, 7.33, 1.48 cm, 23.50 cm, and 1250.67 cm2 per plant respectively under the radiation level 60 Gy, whereas the corresponding figures of the above parameters at the control treatment were 76.21 cm, 18.33, 3.67, 0.92 cm, 17.75 cm and 778.33 cm2 per plant, respectively. A significant relationship was observed among the physiological growth parameters with the increasing levels of gamma radiation. The total dry matter gain, leaf area index, absolute growth rate and relative growth rate were significantly influenced with the rising levels of gamma radiation (up to 60 Gy), whereas the net assimilation rate of individual tea plant non-significantly responded as compared to those of control treatment. Finally after 56 weeks of planting, the maximum total dry weight gain, leaf area index, absolute growth rate, relative growth rate and net assimilation rate recorded under 60 Gay radiation level were 40.25 g/plant/week, 4.25, 1.18 g/week, 0.0621g/g/week and 17.07 g/m2/week respectively.

Research on the Reformation of the Selection Index for Hanwoo Proven Bull (한우보증씨수소 선발지수 개선에 관한 연구)

  • Kim, Hyo-Sun;Hwang, Jeong-Mi;Choi, Tae-Jeong;Park, Byong-Ho;Cho, Kwang-Hyun;Park, Cheol-Jin;Kim, Si-Dong
    • Journal of Animal Science and Technology
    • /
    • v.52 no.2
    • /
    • pp.83-90
    • /
    • 2010
  • Hanwoo proven bulls have been selected since 1987 and consequently contributed to farmers for the improvement of beef cattle in Korea. The demand for the quality beef production as well as higher production efficiency was erupted after early 2000 as relatively cheap imported beef released. Therefore the pressure on the reformation of selection index for Hanwoo proven bulls have been piled up to furnish with Hanwoo's competitive. A total of 734 progeny test data were analyzed to select traits and their weights in the selection index to meet the beef market requirement. Regression analysis with stepwise selection method was used to select proper trait and its weight for selection index. A series of computer simulation was carried out to compare the currently using selection index with the alternate two selection indices proposed in this study. New selection index using standardized breeding values of Loin eye Muscle Area (LMA), Backfat Thickness (BFT) and Marbling Score (MS) with weight ratio 1:-1:6 was proposed. Results showed higher performance in improving MS and BFT gain by 22% and 31% still holding 86%~89% of genetic gain achieved by current index in Carcass Weight (CW) and LMA when new selection index was fitted. Because, new index has little consideration for production cost, further research should be performed to build selection index including cost and income simultaneously.

BSA-Seq Technologies Identify a Major QTL for Clubroot Resistance in Chinese Cabbage (Brassica rapa ssp. pekinesis)

  • Yuan, Yu-Xiang;Wei, Xiao-Chun;Zhang, Qiang;Zhao, Yan-Yan;Jiang, Wu-Sheng;Yao, Qiu-Ju;Wang, Zhi-Yong;Zhang, Ying;Tan, Yafei;Li, Yang;Xu, Qian;Zhang, Xiao-Wei
    • 한국균학회소식:학술대회논문집
    • /
    • 2015.05a
    • /
    • pp.41-41
    • /
    • 2015
  • BSA-seq technologies, combined Bulked Segregant Analysis (BSA) and Next-Generation Sequencing (NGS), are making it faster and more efficient to establish the association of agronomic traits with molecular markers or candidate genes, which is the requirement for marker-assisted selection in molecular breeding. Clubroot disease, caused by Plasmodiophora brassicae, is a serious threat to Brassica crops. Even we have breed new clubroot resistant varieties of Chinese cabbage (B. rapa ssp. pekinesis), the underlying genetic mechanism is unclear. In this study, an $F_2$ population of 340 plants were inoculated with P. brassicae from Xinye (Pathotype 2 on the differentials of Williams). Resistance phenotype segregation ratio for the populations fit a 3:1 (R:S) segregation model, consistent with a single dominant gene model. Super-BSA, using re-sequencing the parents, extremely R and S DNA pools with each 50 plants, revealed 3 potential candidate regions on the chromosome A03, with the most significant region falling between 24.30 Mb and 24.75 Mb. A linkage map with 31 markers in this region was constructed with several closely linked markers identified. A Major QTL for clubroot resistance, CRq, which was identified with the peak LOD score at 169.3, explaining 89.9% of the phenotypic variation. And we developed a new co-segregated InDel marker BrQ-2. Joint BSA-seq and traditional QTL analysis delimited CRq to an 250 kb genomic region, where four TIR-NBS-LRR genes (Bra019409, Bra019410, Bra019412 and Bra019413) clustered. The CR gene CRq and closely linked markers will be highly useful for breeding new resistant Chinese cabbage cultivars.

  • PDF

Potential of the Quantitative Trait Loci Mapping Using Crossbred Population

  • Yang, Shulin;Zhu, Zhengmao;Li, Kui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.18 no.12
    • /
    • pp.1675-1683
    • /
    • 2005
  • In the process of crossbreeding, the linkage disequilibria between the quantitative trait loci (QTL) and their linked markers were reduced gradually with increasing generations. To study the potential of QTL mapping using the crossbred population, we presented a mixed effect model that treated the mean allelic value of the different founder populations as the fixed effect and the allelic deviation from the population mean as random effect. It was assumed that there were fifty QTLs having effect on the trait variation, the population mean and variance were divided to each QTL in founder generation in our model. Only the additive effect was considered in this model for simulation. Six schemes (S1-S6) of crossbreeding were studied. The selection index was used to evaluate the synthetic breeding value of two traits of the individual in the scheme of S2, S4 and S6, and the individuals with high selection index were chosen as the parents of the next generation. Random selection was used in the scheme of S1, S3 and S5. In this study, we premised a QTL explained 40% of the genetic variance was located in a region of 20 cM by the linkage analysis previously. The log likelihood ratio (log LR) was calculated to determine the presence of a QTL at the particular chromosomal position in each of the generations from the fourth to twentieth. The profiles of log LR and the number of the highest log LR located in the region of 5, 10 and 20 cM were compared between different generations and schemes. The profiles and the correct number reduced gradually with the generations increasing in the schemes of S2, S4 and S6, but both of them increased in the schemes of S1, S3 and S5. From the results, we concluded that the crossbreeding population undergoing random selection was suitable for improving the resolution of QTL mapping. Even experiencing index selection, there was still enough variation existing within the crossbred population before the fourteenth generation that could be used to refine the location of QTL in the chromosome region.

Effect of Genotype on Whole-body and Intestinal Metabolic Response to Monensin in Mice

  • Fan, Y.K.;Croom, W.J.;Daniel, Linda;McBride, B.W.;Koci, M.;Havenstein, G.B.;Eisen, E.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.19 no.4
    • /
    • pp.554-562
    • /
    • 2006
  • Two lines of mice, M16 selected for rapid growth and a randomly selected control ICR as well as their reciprocal crosses were used to study the effects of genotype on whole-body energetics and intestinal responses to monensin. Six mice, eight weeks of age, from each line or reciprocal cross were assigned to one of two treatments, 1) drinking water containing 20 mmol/L monensin dissolved in 0.5% V/V ethanol, and 2) drinking water containing 0.5% V/V ethanol (control) for two weeks. After 11 days (age of 9 weeks and 4 days), whole-body $O_2$ consumption was measured. At the end of two weeks, jejunal $O_2$ consumption, intestinal tissue composition and histomorphometrics as well as the rate and efficiency of glucose absorption were estimated. In comparison with the control, monensin administration in drinking water resulted in less daily water intake (13.4 vs. 15.5 ml/mouse, p<0.01), less protein to DNA ratio of jejunal mucosa (5.41 vs. 6.01 mg/mg, p<0.05), lower villus width (88 vs. $100{\mu}m$, p<0.05), and less jejunal tissue $O_2$ consumption enhancement by alcohol (7.2 vs. 10.5%, p<0.01) in mice. Other than those changes, monensin had little (p>0.05) effect on variables measured in either line of mice or their reciprocal cross. In contrast, the M16 line, selected for rapid growth, as compared to the ICR controls or the reciprocal crosses, had less initial (pre-monensin treatment) whole-body $O_2$ consumption per gram of body weight (1.68 vs. $2.11-2.34{\mu}mol/min{\cdot}g$ BW, p<0.01) as compared to the ICR and reciprocal crosses. In addition, the M16 mice exhibited greater growth (412 vs. 137-210 mg/d, p<0.05), better feed efficiency (41.7 vs. 19.9-29.3 mg gain/g feed, p<0.05), shorter small intestines adjusted for fasted body weight (1.00 vs. 1.22-1.44 cm/g FBW, p<0.05), wider villi (109 vs. $87-93{\mu}m$, p<0.05), more mature height of enterocytes (28.8 vs. $24.4-25.1{\mu}m$, p<0.05) and a lower rate (91 vs. $133-145{\eta}mol\;glucose/min{\cdot}g$ jejunum, p<0.05) and less energetic efficiency (95 vs. $59-72{\eta}mol$ ATP expended/${\eta}mol$ glucose uptake, p<0.05) of glucose absorption compared to the ICR line and the reciprocal cross. Monensin had little (p>0.05) effect on whole-body $O_2$ consumption and jejunal function, whilst selection for rapid growth resulted in an apparent down-regulation of intestinal function. These data suggest that genetic selection for increased growth does not result in concomitant changes in intestinal function. This asynchrony in the selection for production traits and intestinal function may hinder full phenotypic expression of genotypic growth potential.

Research Status and Future Subjects to Predict Pest Occurrences in Agricultural Ecosystems Under Climate Change (기후변화에 따른 농업생태계 내 해충 발생 예측을 위한 연구 현황 및 향후 과제)

  • Jung, Jong-Kook;Lee, Hyoseok;Lee, Joon-Ho
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.16 no.4
    • /
    • pp.368-383
    • /
    • 2014
  • Climate change is expected to affect population density, phenology, distribution, morphological traits, reproduction and genetics of insects, and even in the extinction of insects. To develop novel research subjects for predicting climate change effect, basic information about biological and ecological data on insect species should be compiled and reviewed. For this reason, this study was conducted to collect the biological information on insect pests that are essential for predicting potential damage caused by insect pests in future environment. In addition, we compared domestic and foreign research trends regarding climate change effect and suggested future research subjects. Domestic researchers were rather narrow in the subject, and were mostly conducted based on short-term monitoring data to determine relationship between insects and environmental variables. On the other hand, foreign researches studied on various subjects to analyze the effect of climate change, such as changes in distribution of insect using long-term monitoring data or their prediction using population parameters and models, and monitoring of the change of the insect community structure. To determine change of the phenology, distribution, overwintering characteristics, and genetic structures of insects under climate change through development of monitoring technique, in conclusion, further researches are needed. Also, development of population models for major or potential pests is important for prediction of climate change effects.

Analysis of flavonoids in double haploid population derived from microspore culture of F1 hybrid of Brassica rapa (배추 종간 잡종의 소포자배양에 의한 Double haploid 집단의 플라보노이드 함량 분석)

  • Seo, Mi-Suk;Won, So Youn;Kang, Sang-Ho;Kim, Jung Sun
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.35-41
    • /
    • 2017
  • One of the most important species, Brassica rapa encompasses a variety of commercial vegetables, such as the Chinese cabbage, pak choi and oilseed crops. The LP08 of yellow sarson (Brassica rapa ssp, tricolaris) have a distinct morphology, with yellow seed color and a unique tetralocular ovary. LP21 of pak choi (Brassica rapa ssp, chinensis) have a dark brown seed color and bilocular ovary. In this study, we generated double haploid plants by crossing the LP08 (maternal variety) and LP21 (paternal variety), using microspore culture. A total of 66 accessions with various morphological characteristics were used for content analysis of flavonoids. The three flavonoids, quercetin, naringenin and kaempferol, showed differing contents in the two crossing parents. The Chinese cabbage type 'Chiifu' was used as the control. The highest accumulation of total flavonoids was observed in LP08. The lowest mean total flavonoids were found in 'Chiifu'. Among the 66 DH accessions, the quercetin contents of 18 accessions showed higher content than LP08. Kaempferol content was also high, and was found to be 79.7% of the total flavonoid content. Naringenin content was low at 2.8%, and was not detected in 22 accessions. Interestingly, the quercetin content positively correlated with the kaempferol content. These results can be used to identify genetic locus and genes related to useful traits. Phenotypic analysis of 66 DH accessions can further be used for natural selection of good breeding materials in B. rapa.