• Title/Summary/Keyword: genetic traits

Search Result 1,211, Processing Time 0.026 seconds

Analysis of Total Phenolic, Flavonoid Contents, and Antioxidant Capacity Extract from Leaves of Selected Accessions of Two Wild Pear Species, Pyrus pyrifolia and P. ussuriensis

  • Yang, Si Woong;Lee, Hwa;Song, Jae Mo;Choi, Sun Eun;Cheong, Eun Ju
    • Journal of Forest and Environmental Science
    • /
    • v.37 no.3
    • /
    • pp.226-234
    • /
    • 2021
  • Two species, P. pyrifolia and P. ussuriensis, of the genus Pyrus native to Korea, are valuable genetic resources that can be used for food, dietary supplement, pharmaceutical, and cosmetics. Bioactive compounds of the plant leaves are the main components that are used for the products. Farmers had cultivated a few individuals from the wild to produce fruits or leaves for traditional remedy or tea; however, bioactive components of their leaves are not tested. We selected some trees from the natural stand that have distinct traits for the improvement program. We investigated the bioassay on the extracts' bioactive compounds and antioxidant capacity from the selected accessions and other accessions, including newly developed cultivars. The contents of the phenolic compounds and flavonoids from the leaf extracts of the selected accessions were higher than the commonly cultivated trees in both species but lower than 'Sanhyang' in P. ussuriensis. The antioxidant capacity was measured using two assay methods, DPPH and ABST. The selected cultivars also had higher inhibitory activity than common trees. The selected accession 'Cultivar 3' in P. pyrifolia had the highest radical scavenging activity than others. Although leaves of the accessions were used only in this study, all three selected individuals have the potential for cultivar in containing high bioactive compounds and antioxidant capacity.

The significant influence of residual feed intake on flavor precursors and biomolecules in slow-growing Korat chicken meat

  • Poompramun, Chotima;Molee, Wittawat;Thumanu, Kanjana;Molee, Amonrat
    • Animal Bioscience
    • /
    • v.34 no.10
    • /
    • pp.1684-1694
    • /
    • 2021
  • Objective: This study investigated the association between feed efficiency, physicochemical properties, flavor precursors and biomolecules in the thigh meat of Korat (KR) chickens. Methods: The feed intake and body weight of individual male KR chickens were recorded from 1 to 10 weeks old to calculate the individual residual feed intake (RFI) of 75 birds. At 10 weeks of age, chickens with the 10 highest (HRFI) and lowest RFI (LRFI) were slaughtered to provide thigh meat samples. The physicochemical properties (ultimate pH, water holding capacity [WHC], drip loss) and flavor precursors (guanosine monophosphate, inosine monophosphate (IMP), adenosine monophosphate and inosine) were analyzed conventionally, and Fourier transform infrared spectroscopy was used to identify the composition of biomolecules (lipids, ester lipids, amide I, amide II, amide III, and carbohydrates) and the secondary structure of the proteins. A group t-test was used to determine significant differences between mean values and principal component analysis to classify thigh meat samples into LRFI and HRFI KR chickens. Results: The physicochemical properties of thigh meat samples from LRFI and HRFI KR chickens were not significantly different but the IMP content, ratios of lipid, lipid ester, protein (amide I, amide II) were significantly different (p<0.05). The correlation loading results showed that the LRFI group was correlated with high ratios of lipids, lipid esters, collagen content (amide III) and beta sheet protein (rg loading >0.5) while the HRFI group was positively correlated with protein (amide I, amide II), alpha helix protein, IMP content, carbohydrate, ultimate pH and WHC (rg loading >0.5). Conclusion: The thigh meat from chickens with different RFI differed in physiochemical properties affecting meat texture, and in the contents of flavor precursors and biomolecules affecting the nutritional value of meat. This information can help animal breeders to make genetic improvements by taking more account of traits related to RFI.

Epistatic Effects of Six Candidate Genes on Fatty Acid Composition in Korean Native Chicken

  • Jin, Shil;Lee, Seung Hwan;Lee, Doo Ho;Lee, Jun Heon
    • Korean Journal of Poultry Science
    • /
    • v.48 no.2
    • /
    • pp.51-58
    • /
    • 2021
  • Fatty acid composition is an important economic trait that affects meat flavor. Several genes that influence fatty acid composition in meat have been investigated. In a previous study, we identified 51 significant SNP × SNP interactions (P≤0.05) between nine SNPs of six candidate genes (DEGS1, ELOVL6, FABP3, FABP4, FASN, and SCD) on meat fatty acid composition in Korean native chicken. This study further investigated the patterns of the SNP × SNP interactions to understand how they affect the fatty acid content in thigh and breast meat of Korean native chicken. The significant epistatic effects of SNP combinations showed various patterns for each fatty acid trait. The results of this study suggest that the respective additive effects of each SNP on polygenic traits, such as fatty acid composition, should be considered in combination with the epistatic effect of SNP combinations in animal breeding programs. The findings of this study have provided new genetic information for improving meat quality, especially the fatty acid composition, of Korean native chicken.

Application of simple and massive purification system of dsRNA in vivo for acute toxicity to Daphnia magna

  • CHOI, Wonkyun;LIM, Hye Song;KIM, Jin;RYU, Sung-Min;LEE, Jung Ro
    • Entomological Research
    • /
    • v.48 no.6
    • /
    • pp.533-539
    • /
    • 2018
  • The RNA interference (RNAi) has been considered as an important genetic tool and applied to develop a new living modified (LM) crop trait which is an improvement of nutrient quality or pest management. The RNAi of DvSnf7 has been used for resistance to LM maize and the Western Corn Rootworm which is a major agricultural pest for the US Corn Belt. Most of the environmental risk assessments (ERA) of double strand RNA (dsRNA) have been performed using in vitro transcript products, and not in vivo expressed product. A large amount of dsRNA was required for the acute toxicity assay of water fleas. Therefore development of massive dsRNA purification techniques is critical. Daphnia, a freshwater microcrustacean, is a model organism for studying cellular and molecular mechanism involved in life history traits and ecotoxicology. In this study, we established the massive dsRNA purification method using Escherichia coli and implemented acute toxicity assays to Daphnia magna. As a result, the present RNase A and DNase I, dsRNA was efficiently purified without any special techniques or equipment. Even though purified dsRNA existed during the acute toxicity test, lethality or abnormal behavior were not observed in D. magna. These results indicated that GFP and DvSnf7 dsRNA were not significantly affected to D. magna due to their lack of sequence matching in its genome. The purification method of dsRNA and the acute toxicity assay of water fleas using purified dsRNA would be suitable for the toxicological studies of LMOs to aquatic non-target organisms.

In silico approaches to discover the functional impact of non-synonymous single nucleotide polymorphisms in selective sweep regions of the Landrace genome

  • Shin, Donghyun;Won, Kyung-Hye;Song, Ki-Duk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.31 no.12
    • /
    • pp.1980-1990
    • /
    • 2018
  • Objective: The aim of this study was to discover the functional impact of non-synonymous single nucleotide polymorphisms (nsSNPs) that were found in selective sweep regions of the Landrace genome Methods: Whole-genome re-sequencing data were obtained from 40 pigs, including 14 Landrace, 16 Yorkshire, and 10 wild boars, which were generated with the Illumina HiSeq 2000 platform. The nsSNPs in the selective sweep regions of the Landrace genome were identified, and the impacts of these variations on protein function were predicted to reveal their potential association with traits of the Landrace breed, such as reproductive capacity. Results: Total of 53,998 nsSNPs in the mapped regions of pigs were identified, and among them, 345 nsSNPs were found in the selective sweep regions of the Landrace genome which were reported previously. The genes featuring these nsSNPs fell into various functional categories, such as reproductive capacity or growth and development during the perinatal period. The impacts of amino acid sequence changes by nsSNPs on protein function were predicted using two in silico SNP prediction algorithms, i.e., sorting intolerant from tolerant and polymorphism phenotyping v2, to reveal their potential roles in biological processes that might be associated with the reproductive capacity of the Landrace breed. Conclusion: The findings elucidated the domestication history of the Landrace breed and illustrated how Landrace domestication led to patterns of genetic variation related to superior reproductive capacity. Our novel findings will help understand the process of Landrace domestication at the genome level and provide SNPs that are informative for breeding.

Effects of quantitative trait loci determining testicular weight in DDD/Sgn inbred mice are strongly influenced by circulating testosterone levels

  • Suto, Jun-ichi;Kojima, Misaki
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.12
    • /
    • pp.1826-1835
    • /
    • 2019
  • Objective: Testicular growth and development are strongly influenced by androgen. Although both testis weight and plasma testosterone level are inherited traits, the interrelationship between them is not fully established. Males of DDD/Sgn (DDD) mice are known to have extremely heavy testes and very high plasma testosterone level among inbred mouse strains. We dissected the genetic basis of testis weight and analyzed the potential influence of plasma testosterone level in DDD mice. Methods: Quantitative trait loci (QTL) mapping of testis weight was performed with or without considering the influence of plasma testosterone level in reciprocal $F_2$ intercross populations between DDD and C57BL/6J (B6) mice, thereby assessing the influence of testosterone on the effect of testis weight QTL. Candidate genes for testis weight QTL were investigated by next-generation sequencing analysis. Results: Four significant QTL were identified on chromosomes 1, 8, 14, and 17. The DDDderived allele was associated with increased testis weight. The $F_2$ mice were then divided into two groups according to the plasma testosterone level ($F_2$ mice with relatively "low" and "high" testosterone levels), and QTL scans were again performed. Although QTL on chromosome 1 was shared in both $F_2$ mice, QTL on chromosomes 8 and 17 were identified specifically in $F_2$ mice with relatively high testosterone levels. By whole-exome sequencing analysis, we identified one DDD-specific missense mutation Pro29Ser in alpha tubulin acetyltransferase 1 (Atat1). Conclusion: Most of the testis weight QTL expressed stronger phenotypic effect when they were placed on circumstance with high testosterone level. High testosterone influenced the QTL by enhancing the effect of DDD-derived allele and diminishing the effects of B6-derived allele. Since Pro29Ser was not identified in other inbred mouse strains, and since Pro29 in Atat1 has been strongly conserved among mammalian species, Atat1 is a plausible candidate for testis weight QTL on chromosome 17.

Molecular Identification and Morphological Description of Larvae of the Previously Unrecorded Species Cryptacanthodes bergi (Zoarcoidei: Cryptacanthodidae) collected from Gangwon Province, Korea (강원도에서 채집된 등가시치아목 1미기록종, Cryptacanthodes bergi 자어의 분자동정 및 형태기재)

  • Choi, Si-Won;Lee, Soo-Jeong;Kim, Jin-Koo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.54 no.2
    • /
    • pp.188-193
    • /
    • 2021
  • On March 13, 2018 two postflexion larval specimens (18.28 mm and 16.80 mm in standard length) belonging to the family Cryptacanthodidae, suborder Zoarcoidei were collected from Sokcho and Gangneung in Gangwon Province. The family Cryptacanthodidae comprises 4 species worldwide: 3 in the North Pacific Ocean and 1 in the western North Atlantic Ocean. As a result of analyzing 620 bp of the mtDNA COI region, the two postflexion larvae collected in this study were identified as Cryptacanthodes bergi by 99.5% agreement with C. bergi adult registered in NCBI. Postflexion larvae of C. bergi are compressed with large eyes and radial pectoral fins and the anus located in front of the center of the body. Melanophores were intensively distributed along the dorsal midline, except for caudal peduncle, and sporadically distributed on the back of the anus. In addition, there were limited star-like melanophores on the back of the gut. This species showed 0.058 genetic distance when compared mtDNA COI region of C. aleutensis, and it was well distinguished in the distribution pattern of black vesicles of the head, count and measurement traits. Considering the morphological and ecological characteristics of this species, we suggest a new Korean name, " Gwisin-jang-gaeng-i ".

Chromosome-specific polymorphic SSR markers in tropical eucalypt species using low coverage whole genome sequences: systematic characterization and validation

  • Patturaj, Maheswari;Munusamy, Aiswarya;Kannan, Nithishkumar;Kandasamy, Ulaganathan;Ramasamy, Yasodha
    • Genomics & Informatics
    • /
    • v.19 no.3
    • /
    • pp.33.1-33.10
    • /
    • 2021
  • Eucalyptus is one of the major plantation species with wide variety of industrial uses. Polymorphic and informative simple sequence repeats (SSRs) have broad range of applications in genetic analysis. In this study, two individuals of Eucalyptus tereticornis (ET217 and ET86), one individual each from E. camaldulensis (EC17) and E. grandis (EG9) were subjected to whole genome resequencing. Low coverage (10×) genome sequencing was used to find polymorphic SSRs between the individuals. Average number of SSR loci identified was 95,513 and the density of SSRs per Mb was from 157.39 in EG9 to 155.08 in EC17. Among all the SSRs detected, the most abundant repeat motifs were di-nucleotide (59.6%-62.5%), followed by tri- (23.7%-27.2%), tetra- (5.2%-5.6%), penta- (5.0%-5.3%), and hexa-nucleotide (2.7%-2.9%). The predominant SSR motif units were AG/CT and AAG/TTC. Computational genome analysis predicted the SSR length variations between the individuals and identified the gene functions of SSR containing sequences. Selected subset of polymorphic markers was validated in a full-sib family of eucalypts. Additionally, genome-wide characterization of single nucleotide polymorphisms, InDels and transcriptional regulators were carried out. These variations will find their utility in genome-wide association studies as well as understanding of molecular mechanisms involved in key economic traits. The genomic resources generated in this study would provide an impetus to integrate genomics in marker-trait associations and breeding of tropical eucalypts.

Optimal population size to detect quantitative trait loci in Korean native chicken: a simulation study

  • Nwogwugwu, Chiemela Peter;Kim, Yeongkuk;Cho, Sunghyun;Roh, Hee-Jong;Cha, Jihye;Lee, Seung Hwan;Lee, Jun Heon
    • Animal Bioscience
    • /
    • v.35 no.4
    • /
    • pp.511-516
    • /
    • 2022
  • Objective: A genomic region associated with a particular phenotype is called quantitative trait loci (QTL). To detect the optimal F2 population size associated with QTLs in native chicken, we performed a simulation study on F2 population derived from crosses between two different breeds. Methods: A total of 15 males and 150 females were randomly selected from the last generation of each F1 population which was composed of different breed to create two different F2 populations. The progenies produced from these selected individuals were simulated for six more generations. Their marker genotypes were simulated with a density of 50K at three different heritability levels for the traits such as 0.1, 0.3, and 0.5. Our study compared 100, 500, 1,000 reference population (RP) groups to each other with three different heritability levels. And a total of 35 QTLs were used, and their locations were randomly created. Results: With a RP size of 100, no QTL was detected to satisfy Bonferroni value at three different heritability levels. In a RP size of 500, two QTLs were detected when the heritability was 0.5. With a RP size of 1,000, 0.1 heritability was detected only one QTL, and 0.5 heritability detected five QTLs. To sum up, RP size and heritability play a key role in detecting QTLs in a QTL study. The larger RP size and greater heritability value, the higher the probability of detection of QTLs. Conclusion: Our study suggests that the use of a large RP and heritability can improve QTL detection in an F2 chicken population.

Comparison among Traits Related to Heading of Barley Near-isogenic Lines for Growth Habit (보리 파성 Near-isogenic Line 간의 출수 및 주요 형질비교)

  • Chun, Jong-Un;Park, Moon-Woong;Lee, Eun-Sup
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.1
    • /
    • pp.16-22
    • /
    • 1990
  • Four near-isogenic lines of growth habit derived from the breeders' seeds of Oweolbori and Jogangbori were obtained, respectively. From the analysis of pedigree charts, the genes for the pertinent growth habit in Oweolbori and Jogangbori seemed to be derived from the Milyang 6 and Hiproly, or Joshushirohadaka, respectively. The spring habit grades of the isogenic lines were classified: Oweolbori #1 and #2, Jogangbori #1 and #2 as I : Oweolbori #3 and #4, Jogangbori #3 and #4 as III, respectively. The spring habit of Oweolbori #1 and #2 might be controlled by one pair of recessive gene, shsh. The photoperiodic response, earliness in a narrow sense, and ratio of heading retardation significantly different in the isogenic lines with the same genetic backgrounds. The heading mature time differed in the isogenic lines sown in fall.

  • PDF