• Title/Summary/Keyword: genetic system

Search Result 3,399, Processing Time 0.034 seconds

Cyclic AMP response element binding (CREB) protein acts as a positive regulator of SOX3 gene expression in NT2/D1 cells

  • Kovacevic-Grujicic, Natasa;Mojsin, Marija;Popovic, Jelena;Petrovic, Isidora;Topalovic, Vladanka;Stevanovic, Milena
    • BMB Reports
    • /
    • v.47 no.4
    • /
    • pp.197-202
    • /
    • 2014
  • SOX3 is one of the earliest neural markers in vertebrates, playing the role in specifying neuronal fate. In this study we have established first functional link between CREB and human SOX3 gene which both have important roles in the nervous system throughout development and in the adulthood. Here we demonstrate both in vitro and in vivo that CREB binds to CRE half-site located -195 to -191 within the human SOX3 promoter. Overexpression studies with CREB or its dominant-negative inhibitor A-CREB indicate that this transcription factor acts as a positive regulator of basal SOX3 gene expression in NT2/D1 cells. This is further confirmed by mutational analysis where mutation of CREB binding site results in reduction of SOX3 promoter activity. Our results point at CREB as a positive regulator of SOX3 gene transcription in NT2/D1 cells, while its contribution to RA induction of SOX3 promoter is not prominent.

Antibody-Mediated Resistance to Rhizomania Disease in Sugar Beet Hairy Roots

  • Jafarzade, M.;Ramezani, M.;Hedayati, F.;Mokhtarzade, Z.;Zare, B.;Sabet, M.S.;Norouzi, P.;Malboobi, M.A.
    • The Plant Pathology Journal
    • /
    • v.35 no.6
    • /
    • pp.692-697
    • /
    • 2019
  • Agrobacterium rhizogenes-mediated transformation of sugar beet hairy roots expressing single-chain variable fragment (scFv) was exploited to evaluate the efficacy of four antibody-based constructs for interfering with the Beet necrotic yellow vein virus infection. The scFv specific to a major coat protein of virus, p21, was targeted to various cellular compartments including the cytosol (pIC and pICC constructs), apoplast (pIA), and mitochondrion (pIM). After mechanical virus inoculation, most of the hairy root clones expressing scFv in the cytosol displayed low virus titers while the majority of transgenic hairy root clones accumulated antibody in outer membrane of mitochondria or apoplast were infected. This hairy root system provided an efficient and rapid approach to initially investigating root disease resistance like rhizomania prior to transform whole recalcitrant plants such as sugar beet.

Population structure analysis of Yeonsan Ogye using microsatellite markers

  • Cho, Sung Hyun;Lee, Seung-Sook;Manjula, Prabuddha;Kim, Minjun;Lee, Seung Hwan;Lee, Jun Heon;Seo, Dongwon
    • Journal of Animal Science and Technology
    • /
    • v.62 no.6
    • /
    • pp.790-800
    • /
    • 2020
  • The Yeonsan Ogye (YO) chicken is a natural heritage of Korea, characterized by black feathers, skin, bones, eyes, and comb. The purebred of YO population has been reared under the natural mating system with no systematic selection and breeding plan. The purpose of this study was to identify the genetic diversity and find the optimal number of population sub-division using 12 polymorphic microsatellite (MS) markers to construct a pedigree-based breeding plan for the YO population. A total of 509 YO birds were used for this study. Genetic diversity and population structure analysis were conducted based on the MS marker genotype information. The overall average polymorphic information content value and expected heterozygosity of the population were 0.586, and 0.642, respectively. The K-mean cluster analysis based on the genetic distance result confirmed that the current YO population can be divided into three ancestry groups. Individuals in each group were evaluated based on their genetic distance to identify the potential candidates for a future breeding plan. This study concludes that a future breeding plan with known pedigree information of selected founder animals, which holds high genetic diversity, could be the best strategy to ensure the conservation of the Korean YO chicken population.

Efficient Determination of Genomic Variants from Sorghum Genetic Resources by HPC

  • Tae-Ho Lee;Myung-Eun Park;Yun-Ho Oh;Da-Hye Jeon
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.241-241
    • /
    • 2022
  • In the digital age, a lot of agricultural R&D is based on data. However, genetic resources are still essential for basic research and agricultural development. Accordingly, many countries are making great efforts to secure various genetic resources. In Korea, the National Agrobiodiversity Center (NAC) has more than 270,000 plant genetic resources so far as part of its efforts. In order to efficiently use the resources for agricultural R&D, it is essential to determine the genotypes of the resources. For this, it is essential to build a system for mass genotyping. For this, sorghum were selected as a model crop considering the genome size, the high-quality reference genome, and the number of resources. To efficiently determine the genotype data from many genetic resources, we developed a GATK pipeline that works efficiently on HPC. The pipeline efficiently and rapidly determined 769 genotypes of 410 genetic resources. Going forward, our team will continue to work to determine genotypes of over a thousand sorghum resources, and the data will be released at the National Agricultural Biotechnology Information Center (NABIC) in order to be used in agricultural R&D.

  • PDF

Genetic Algorithm based hyperparameter tuned CNN for identifying IoT intrusions

  • Alexander. R;Pradeep Mohan Kumar. K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.755-778
    • /
    • 2024
  • In recent years, the number of devices being connected to the internet has grown enormously, as has the intrusive behavior in the network. Thus, it is important for intrusion detection systems to report all intrusive behavior. Using deep learning and machine learning algorithms, intrusion detection systems are able to perform well in identifying attacks. However, the concern with these deep learning algorithms is their inability to identify a suitable network based on traffic volume, which requires manual changing of hyperparameters, which consumes a lot of time and effort. So, to address this, this paper offers a solution using the extended compact genetic algorithm for the automatic tuning of the hyperparameters. The novelty in this work comes in the form of modeling the problem of identifying attacks as a multi-objective optimization problem and the usage of linkage learning for solving the optimization problem. The solution is obtained using the feature map-based Convolutional Neural Network that gets encoded into genes, and using the extended compact genetic algorithm the model is optimized for the detection accuracy and latency. The CIC-IDS-2017 and 2018 datasets are used to verify the hypothesis, and the most recent analysis yielded a substantial F1 score of 99.23%. Response time, CPU, and memory consumption evaluations are done to demonstrate the suitability of this model in a fog environment.

Genetic Effects of Polymorphisms in Myogenic Regulatory Factors on Chicken Muscle Fiber Traits

  • Yang, Zhi-Qin;Qing, Ying;Zhu, Qing;Zhao, Xiao-Ling;Wang, Yan;Li, Di-Yan;Liu, Yi-Ping;Yin, Hua-Dong
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.28 no.6
    • /
    • pp.782-787
    • /
    • 2015
  • The myogenic regulatory factors is a family of transcription factors that play a key role in the development of skeletal muscle fibers, which are the main factors to affect the meat taste and texture. In the present study, we performed candidate gene analysis to identify single-nucleotide polymorphisms in the MyoD, Myf5, MyoG, and Mrf4 genes using polymerase chain reaction-single strand conformation polymorphism in 360 Erlang Mountain Chickens from three different housing systems (cage, pen, and free-range). The general linear model procedure was used to estimate the statistical significance of association between combined genotypes and muscle fiber traits of chickens. Two polymorphisms (g.39928301T>G and g.11579368C>T) were detected in the Mrf4 and MyoD gene, respectively. The diameters of thigh and pectoralis muscle fibers were higher in birds with the combined genotypes of GG-TT and TTCT (p<0.05). Moreover, the interaction between housing system and combined genotypes has no significant effect on the traits of muscle fiber (p>0.05). Our findings suggest that the combined genotypes of TT-CT and GG-TT might be advantageous for muscle fiber traits, and could be the potential genetic markers for breeding program in Erlang Mountain Chickens.

Development of Task Assignment Strategy for the Optimized Utilization of the Real-time Network System (실시간 네트워크 시스템의 이용률 최적화를 위한 태스크 배치 전략 개발)

  • Oh, Jae-Joon;Kim, Hong-Ryeol;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2004.11c
    • /
    • pp.72-75
    • /
    • 2004
  • In this paper, the task assignment strategy considering communication delay and the priority of distributed tasks is proposed for the real-time network system in order to maximize the utilization of the system. For the task assignment strategy, the relationship among priority of tasks in network nodes, the calculation time of each task, and the end-to-end response time including the network delay is formulated firstly. Then, the task assignment strategy using the genetic algorithm is proposed to optimize the utilization of the system considering the LCM(Least Common Multiple) period. The effectiveness of proposed strategy is proven by the simulation for estimating the performance such as the utilization and the response time of the system in case of changing the number of tasks and the number of network nodes.

  • PDF

Modeling and Calibration of a 3D Robot Laser Scanning System (3차원 로봇 레이저 스캐닝 시스템의 모델링과 캘리브레이션)

  • Lee Jong-Kwang;Yoon Ji Sup;Kang E-Sok
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • In this paper, we describe the modeling for the 3D robot laser scanning system consisting of a laser stripe projector, camera, and 5-DOF robot and propose its calibration method. Nonlinear radial distortion in the camera model is considered for improving the calibration accuracy. The 3D range data is calculated using the optical triangulation principle which uses the geometrical relationship between the camera and the laser stripe plane. For optimal estimation of the system model parameters, real-coded genetic algorithm is applied in the calibration process. Experimental results show that the constructed system is able to measure the 3D position within about 1mm error. The proposed scheme could be applied to the kinematically dissimilar robot system without losing the generality and has a potential for recognition for the unknown environment.

Remote Controller Design of Networked Control System using Genetic Algorithm (유전자 알고리즘을 이용한 네트워크 기반 제어 시스템의 원격 제어기 설계)

  • Kim, H. H.;Lee, K. C;Lee, S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.598-601
    • /
    • 2001
  • As many sensors and actuators are used in many automated system, various industrial networks are adopted for digital control system. In order to take advantages of the networking, however, the network implementation should be carefully designed to satisfy real-time requirements considering network delays. This paper presents the implementation scheme of a networked control system via Profibus-DP network. More specifically, the effect of the network delay on the control performance was evaluated on a Profibus-DP testbed, and a GA based PID tuning algorithm is proposed to demonstrate the fesibility of the networked control system.

  • PDF

Optimal Parameter Selection of Power System Stabilizer using Genetic Algorithm (유전 알고리즘을 이용한 전력시스템 안정화 장치의 최적 파라미터 선정)

  • Chung, Hyeng-Hwan;Wang, Yong-Peel;Chung, Dong-Il;Chung, Mun-Kyu
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.6
    • /
    • pp.683-691
    • /
    • 1999
  • In this paper, it is suggested that the selection method of optimal parameter of power system stabilizer(PSS) with robustness in low frequency oscillation for power system using Real Variable Elitism Genetc Algorithm(RVEGA). The optimal parameters were selected in the case of power system stabilizer with one lead compensator, and two lead compensator. Also, the frequency responses characteristic of PSS, the system eigenvalues criterion and the dynamic characteristic were considered in the normal load and the heavy load, which proved usefulness of RVEGA compare with Yu's compensator design theory.

  • PDF