• Title/Summary/Keyword: genetic research

Search Result 6,113, Processing Time 0.034 seconds

Genetic Distance Methods for the Identification of Cervus Species

  • Seo Jung-Chul;Kim Min-Jung;Lee Chan;Lee Jeong-Soo;Choi Kang-Duk;Leem Kang-Hyun
    • The Journal of Korean Medicine
    • /
    • v.27 no.2 s.66
    • /
    • pp.225-231
    • /
    • 2006
  • Objectives : This study was performed to determine if unknown species of antler samples could be identified by genetic distance methods. Methods : The DNAs of 4 antler samples were extracted, amplified by PCR, and sequenced. The DNAs of antlers were identified by genetic distance. Genetic distance method was made using MEGA software (Molecular Evolutionary Genetics Analysis, 3.1). Results : By genetic distance methods, all 4 antler samples were closest to Cervus elaphus nelsoni among Cervus species. Conclusion : These results suggest that genetic distance methods might be used as a tool for the identification of Cervus species.

  • PDF

A Hybrid Genetic Algorithm for Job Shop Scheduling (Job Shop 일정계획을 위한 혼합 유전 알고리즘)

  • 박병주;김현수
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.2
    • /
    • pp.59-68
    • /
    • 2001
  • The job shop scheduling problem is not only NP-hard, but is one of the well known hardest combinatorial optimization problems. The goal of this research is to develop an efficient scheduling method based on hybrid genetic algorithm to address job shop scheduling problem. In this scheduling method, generating method of initial population, new genetic operator, selection method are developed. The scheduling method based on genetic algorithm are tested on standard benchmark job shop scheduling problem. The results were compared with another genetic algorithm0-based scheduling method. Compared to traditional genetic, algorithm, the proposed approach yields significant improvement at a solution.

  • PDF

Genetic Gain and Diversity in a Clonal Seed Orchard of Pinus Koraiensis Under Various Thinning Intensities (잣나무 클론 채종원에서 간벌 강도에 따른 개량효과와 유전다양성)

  • Oh, C.Y.;Han, S.U.;Kim, C.S.;Kang, K.S.;Lee, B.S.
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.263-268
    • /
    • 2008
  • Estimates of genetic gain (in volume growth) and diversity (expressed as status number, $N_s$) were determined in a clonal seed orchard of Pinus koraiensis. The genetic thinning was based on clonal breeding values (represented by general combining ability) obtained from progeny tests, clonal fertility estimated by strobilus production, and clonal size variation determined by the ramet numbers per clone. Parental GCA values for volume growth were calculated, based on height and diameter at breast height measured from field trials. Clonal fertility was estimated from the assessments of strobilus production over twelve years from 1991 to 2003, and used for the calculation of status number. There are 179 clones and 5,268 ramets in 12ha area of P. koraiensis clonal seed orchard. Genetic gain and diversity estimates were determined under assumptions of 30% pollen contamination and inferior genetic value of contaminating pollen. Genetic gain increased as thinning rates were set from 10% to 60%. However, for the higher thinning intensities, the increase of genetic gain was not remarkable. Genetic thinning by means of truncation selection resulted in a greater genetic gain but a large decrease in status number. Status number was represented around 40 clones for 10% through 60% thinning intensities, but for the higher thinning intensities, it was a bit fluctuated. Based on the present results, it could be concluded that thinning rate should not be stronger than 60% to optimize genetic gain while conserving genetic diversity. Consequently 50% or 60% thinning rate might be appropriate for genetic thinning in the clonal seed orchard of P. koraiensis. The effect of pollen contamination on the genetic gain and the consequence of genetic thinning for seed production in the clonal seed orchard, and seed orchard management scheme were also discussed.

A Genetic Algorithm-based Scheduling Method for Job Shop Scheduling Problem (유전알고리즘에 기반한 Job Shop 일정계획 기법)

  • 박병주;최형림;김현수
    • Korean Management Science Review
    • /
    • v.20 no.1
    • /
    • pp.51-64
    • /
    • 2003
  • The JSSP (Job Shop Scheduling Problem) Is one of the most general and difficult of all traditional scheduling problems. The goal of this research is to develop an efficient scheduling method based on genetic algorithm to address JSSP. we design scheduling method based on SGA (Single Genetic Algorithm) and PGA (Parallel Genetic Algorithm). In the scheduling method, the representation, which encodes the job number, is made to be always feasible, initial population is generated through integrating representation and G&T algorithm, the new genetic operators and selection method are designed to better transmit the temporal relationships in the chromosome, and island model PGA are proposed. The scheduling method based on genetic algorithm are tested on five standard benchmark JSSPs. The results were compared with other proposed approaches. Compared to traditional genetic algorithm, the proposed approach yields significant improvement at a solution. The superior results indicate the successful Incorporation of generating method of initial population into the genetic operators.

Understanding of Schizophrenia Based on the Study of Molecular Genetics (분자유전학을 통한 정신분열증의 이해)

  • Lee, Min-Soo;Kim, Pyo-Han
    • Korean Journal of Biological Psychiatry
    • /
    • v.3 no.1
    • /
    • pp.14-21
    • /
    • 1996
  • Molecular genetic approaches contribute to the understanding of the underlying genetic mechanism for schizophrenia. Currently genetic evidence rests on molecular genetic methods. However, the result are contradictory and somewhat confusing due to genetic heterogeneity, incomplete penetrance, misspecification of genetic model. It is expected that molecular genetics could provide key answers to the genetic cause of schizophrenia. The purpose of this article is to call attention of the readers to heterogeneity, linkage, association, basic molecular genetic methods and genetic markers and to the need far further research. It is the author's hope thai continuous research on the molecular genetics con provide clinicians with better understanding of the schizophrenia.

  • PDF

Genetic Structure in Wild Populations of Ayu Plecoglossus altivelis in Korea and Japan

  • Han, Hyon-Sob;Taniguchi, Nobuhiko;Lee, Jong-Ha;Yoon, Moon-Geun
    • Fisheries and Aquatic Sciences
    • /
    • v.14 no.4
    • /
    • pp.295-301
    • /
    • 2011
  • We investigated the genetic structure of Korean and Japanese ayu Plecoglossus altivelis populations by examining 669 individuals from 14 populations using three microsatellite loci. Genetic variation did not differ significantly among the populations examined in terms of allelic number and heterozygosity. Korean populations were genetically close to each other, implying that persistent gene flow has occurred in these populations. This suggests that eastern populations in Korea form a single large population and all of the Korean populations are distinct from the Japanese populations. Pairwise population $F_{ST}$ estimates, principal component analyses, and a neighbor-joining tree showed that genetic separation between the southern and pooled eastern coast populations was probably influenced by restricted gene flow. Hierarchical analysis of molecular variance (AMOVA) revealed a weak but significant genetic structure among three ayu groups (eastern and southern coasts of Korea and the Japan coast), and no genetic variation within groups. The estimated genetic population structure and potential applications of microsatellite markers may aid in the proper management of ayu populations.