• Title/Summary/Keyword: genetic regulation

Search Result 501, Processing Time 0.027 seconds

Role of Sirtuin 1 in Depression and Associated Mechanisms (우울증에 관한 Sirtuin 1의 역할과 관련된 기전)

  • Seog, Dae-Hyun;Park, Sung Woo
    • Journal of Life Science
    • /
    • v.31 no.12
    • /
    • pp.1120-1127
    • /
    • 2021
  • Depression has a negative impact on social functioning due to its high prevalence and increased suicide rate, and is a disease with a high economic burden. Depression is related to diverse brain-related phenomena, such as neuroinflammation, synaptic dysfunction, and cognitive deficit. As antidepressant drugs used in clinical trials have shown poor therapeutic effects, antidepressant drugs that show rapid efficacy urgently need to be developed. Although studies on various genes, proteins, and signaling pathways related to depression have been conducted, the pathogenesis of depression has not been clearly elucidated. Sirtuin 1 is a nicotinamide-adenine dinucleotide- (NAD+-) dependent histone deacetylase and is involved in cell differentiation, apoptosis, autophagy, and cancer metabolism. Recent genetic studies found that sirtuin 1 is a potential target gene for depression. In addition, preclinical studies reported that sirtuin 1 signaling affects depression-like behavior. In this review, we attempt to present up-to-date knowledge of depression and sirtuin 1. We describe the various roles of sirtuin 1 in the regulation of glial activation, circadian rhythm, neurogenesis, and cognitive function and the effects of its expression on depression. Further, we discuss the effect of sirtuin 1 on the impairment of neural plasticity, one of the key mechanisms of depression, and the associated mechanisms of sirtuin 1.

Pathophysiological Functions of Deubiquitinating Enzymes in Obesity and Related Metabolic Diseases (탈유비퀴틴화 효소 DUBs의 비만 및 대사 관련 질환에서 병태생리학적 기능)

  • Lee, Seul Gi;Kwon, Taeg Kyu
    • Journal of Life Science
    • /
    • v.32 no.6
    • /
    • pp.476-481
    • /
    • 2022
  • Ubiquitin signaling regulates virtually all aspects of eukaryotic biology and dynamic processes in which protein substrates are modified by ubiquitin. To regulate these processes, deubiquitinating enzymes (DUBs) cleave ubiquitin or ubiquitin-like proteins from these substrates. DUBs have been implicated in the pathogenesis of cancer, leading to the development of increasing numbers of small-molecule DUB inhibitors. On the other hand, recent studies have focused on the function of DUBs in metabolic diseases such as obesity, diabetes, and fatty liver diseases. DUBs play a positive or negative role in the progression and development of metabolic diseases. Their involvement in cell pathology and regulation of major transcription factors in metabolic syndrome has been examined in vitro and in animal and human biopsies. UCH, USP7, and USP19 were linked to adipocyte differentiation, body weight gain, and insulin resistance in genetic or diet-induced obesity. CYLD, USP4, and USP18 were found to be closely associated with fatty liver diseases. In addition, these liver diseases were accompanied by body weight change in certain cases. Collectively, in this review, we discuss the current understanding of DUBs in metabolic diseases with a particular focus on obesity. We also provide basic knowledge and regulatory mechanisms of DUBs and suggest these enzymes as therapeutic targets for metabolic diseases.

Genome-wide association study for loin muscle area of commercial crossbred pigs

  • Menghao Luan;Donglin Ruan;Yibin Qiu;Yong Ye;Shenping Zhou;Jifei Yang;Ying Sun;Fucai Ma;Zhenfang Wu;Jie Yang;Ming Yang;Enqin Zheng;Gengyuan Cai;Sixiu Huang
    • Animal Bioscience
    • /
    • v.36 no.6
    • /
    • pp.861-868
    • /
    • 2023
  • Objective: Loin muscle area (LMA) is an important target trait of pig breeding. This study aimed to identify single nucleotide polymorphisms (SNPs) and genes associated with LMA in the Duroc×(Landrace×Yorkshire) crossbred pigs (DLY). Methods: A genome-wide association study was performed using the Illumina 50K chip to map the genetic marker and genes associated with LMA in 511 DLY pigs (255 boars and 256 sows). Results: After quality control, we detected 35,426 SNPs, including six SNPs significantly associated with LMA in pigs, with MARC0094338 and ASGA0072817 being the two key SNPs responsible for 1.77% and 2.48% of the phenotypic variance of LMA, respectively. Based on previous research, we determined two candidate genes (growth hormone receptor [GHR] and 3-oxoacid Co A-transferase 1 [OXCT1]) that are associated with fat deposition and muscle growth and found further additional genes (MYOCD, ARHGAP44, ELAC2, MAP2K4, FBXO4, FBLL1, RARS1, SLIT3, and RANK3) that are presumed to have an effect on LMA. Conclusion: This study contributes to the identification of the mutation that underlies quantitative trait loci associated with LMA and to future pig breeding programs based on marker-assisted selection. Further studies are needed to elucidate the role of the identified candidate genes in the physiological processes involved in LMA regulation.

Apoptosis of Kinetin Riboside in Colorectal Cancer Cells Occurs by Promoting β-Catenin Degradation

  • TaeKyung Nam;Wonku Kang;Sangtaek Oh
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.9
    • /
    • pp.1206-1212
    • /
    • 2023
  • The Wnt/β-catenin pathway plays essential roles in regulating various cellular behaviors, including proliferation, survival, and differentiation [1-3]. The intracellular β-catenin level, which is regulated by a proteasomal degradation pathway, is critical to Wnt/β-catenin pathway control [4]. Normally, casein kinase 1 (CK1) and glycogen synthase kinase-3β (GSK-3β), which form a complex with the scaffolding protein Axin and the tumor suppressor protein adenomatous polyposis coli (APC), phosphorylate β-catenin at Ser45, Thr41, Ser37, and Ser33 [5, 6]. Phosphorylated β-catenin is ubiquitinated by the β-transducin repeat-containing protein (β-TrCP), an F-box E3 ubiquitin ligase complex, and ubiquitinated β-catenin is degraded via a proteasome pathway [7, 8]. Colorectal cancer is a significant cause of cancer-related deaths worldwide. Abnormal up-regulation of the Wnt/β-catenin pathway is a major pathological event in intestinal epithelial cells during human colorectal cancer oncogenesis [9]. Genetic mutations in the APC gene are observed in familial adenomatous polyposis coli (FAP) and sporadic colorectal cancers [10]. In addition, mutations in the N-terminal phosphorylation motif of the β-catenin gene were found in patients with colorectal cancer [11]. These mutations cause β-catenin to accumulate in the nucleus, where it forms complexes with transcription factors of the T-cell factor/lymphocyte enhancer factor (TCF/LEF) family to stimulate the expression of β-catenin responsive genes, such as c-Myc and cyclin D1, which leads to colorectal tumorigenesis [12-14]. Therefore, downregulating β-catenin response transcription (CRT) is a potential strategy for preventing and treating colorectal cancer. Plant cytokinins are N6-substituted purine derivatives; they promote cell division in plants and regulate developmental pathways. Natural cytokinins are classified as isoprenoid (isopentenyladenine, zeatin, and dihydrozeatin), aromatic (benzyladenine, topolin, and methoxytopolin), or furfural (kinetin and kinetin riboside), depending on their structure [15, 16]. Kinetin riboside was identified in coconut water and is a naturally produced cytokinin that induces apoptosis and exhibits antiproliferative activity in several human cancer cell lines [17]. However, little attention has been paid to kinetin riboside's mode of action. In this study, we show that kinetin riboside exerts its cytotoxic activity against colon cancer cells by suppressing the Wnt/β-catenin pathway and promoting intracellular β-catenin degradation.

Development of Rapid-cycling Brassica rapa Plant Program based on Cognitive Apprenticeship Model and its Application Effects (인지적 도제 모델 기반의 Rapid-cycling Brassica rapa 식물 프로그램의 개발 및 적용 효과)

  • Jae Kwon Kim;Sung-Ha Kim
    • Journal of Science Education
    • /
    • v.47 no.2
    • /
    • pp.192-210
    • /
    • 2023
  • This study was intended to develop the plant molecular biology experimental program using Rapid-cycling Brassica rapa (RcBr) based on the teaching steps and teaching methods of the cognitive apprenticeship model and to determine its application effects. In order to improve a subject's cognitive function and expertise on molecular biology experiments, two themes composed of a total 8 class sessions were selected: 'Identification of DFR gene in purple RcBr and non-purple RcBr' and 'Identification of RcBr's genetic polymorphism site using the DNA profiling method'. Research subjects were 18 pre-service teaching majors in biology education of H University in Chungbuk, Korea. The effectiveness of the developed program was verified by analyzing the enhancement of 'cognitive function' related to the use of molecular biology knowledge and technology, and the enhancement of 'domain-general metacognitive abilities.' The effect of the developed program was also determined by analyzing the task flow diagram provided. The developed program was effective in improving the cognitive functions of the pre-service teachers on the use of knowledge and technology of molecular biology experiments. It was especially effective to improve the higher cognitive function of pre-service teachers who did not have the previous experience. The developed program also showed a significant improvement in the task of metacognitive knowledge and in the planning, checking, and evaluation of metacognitive regulation, which are sub-elements of domain-general metacognitive abilities. It was found that the developed program's self-test activity could help the pre-service teachers to improve their metacognitive regulation. Therefore, this developed program turned out to be helpful for pre-service teachers to develop core competencies needed for molecular biology experimental classes. If the teaching and learning materials of the developed program could be reconstructed and applied to in-service teachers or high school students, it would be expected to improve their metacognitive abilities.

Expression Profiling of MLO Family Genes under Podosphaera xanthii Infection and Exogenous Application of Phytohormones in Cucumis melo L. (멜론 흰가루병균 및 식물 호르몬 처리하에서 MLO 유전자군의 발현검정)

  • Howlader, Jewel;Kim, Hoy-Taek;Park, Jong-In;Ahmed, Nasar Uddin;Robin, Arif Hasan Khan;Jung, Hee-Jeong;Nou, III-Sup
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.419-430
    • /
    • 2016
  • Powdery mildew disease caused by Podosphaera xanthii is a major concern for Cucumis melo production worldwide. Knowledge on genetic behavior of the related genes and their modulating phytohormones often offer the most efficient approach to develop resistance against different diseases. Mildew Resistance Locus O (MLO) genes encode proteins with seven transmembrane domains that have significant function in plant resistance to powdery mildew fungus. We collected 14 MLO genes from ‘Melonomics’ database. Multiple sequence analysis of MLO proteins revealed the existence of both evolutionary conserved cysteine and proline residues. Moreover, natural genetic variation in conserved amino acids and their replacement by other amino acids are also observed. Real-time quantitative PCR expression analysis was conducted for the leaf samples of P. xanthii infected and phyto-hormones (methyl jasmonate and salicylic acid) treated plants in melon ‘SCNU1154’ line. Upon P. xanthii infection using 7 different races, the melon line showed variable disease reactions with respect to spread of infection symptoms and disease severity. Three out of 14 CmMLO genes were up-regulated and 7 were down-regulated in leaf samples in response to all races. The up- or down-regulation of the other 4 CmMLO genes was race-specific. The expression of 14 CmMLO genes under methyl jasmonate and salicylic acid application was also variable. Eleven CmMLO genes were up-regulated under salicylic acid treatment, and 7 were up-regulated under methyl jasmonate treatments in C. melo L. Taken together, these stress-responsive CmMLO genes might be useful resources for the development of powdery mildew disease resistant C. melo L.

Identification and Functional Analysis of Escherichia coli RNase E Mutants (Escherichia coli 리보핵산 내부분해효소 RNase E의 돌연변이체 선별 및 특성분석)

  • Shin, Eun-Kyoung;Go, Ha-Young;Kim, Young-Min;Ju, Se-Jin;Lee, Kang-Seok
    • Korean Journal of Microbiology
    • /
    • v.43 no.4
    • /
    • pp.325-330
    • /
    • 2007
  • RNase E is an essential Escherichia coli endoribonuclease that plays a major role in the decay and processing of a large fraction of RNAs in the cell and expression of N-terminal domain consisted of 1-498 amino acids (N-Rne) is sufficient to support normal cellular growth. By utilizing these properties of RNase E, we developed a genetic system to screen for amino acid substitutions in the catalytic domain of the protein (N-Rne) that lead to various phenotypes. Using this system, we identified three kinds of mutants. A mutant N-Rne containing amino acid substitution in the S1 domain (I6T) of the protein was not able to support survival of E. coli cells, and another mutant N-Rne with amino acid substitution at the position 488 (R488C) in the small domain enabled N-Rne to have an elevated ribonucleolytic activity, while amino acid substitution in the DNase I domain (N305D) only enabled N-Rne to support survival of E. roli cells when the mutant N-Rne was over-expressed. Analysis of copy number of ColEl-type plasmid revealed that effects of amino acid substitution on the ability of N-Rne to support cellular growth stemmed from their differential effects on the ribonucleolytic activity of N-Rne in the cell. These results imply that the genetic system developed in this study can be used to isolate mutant RNase E with various phenotypes, which would help to unveil a functional role of each subdomain of the protein in the regulation of RNA stability in E. coli.

Study on the Genetic Characteristics of Waterlogging Tolerant Pepper (Capsicum annuum L.) for Breeding Tolerant Varieties against Flooding Stress (내습성 고추 품종 육성을 위한 선발계통의 유전적 특성 구명)

  • Yang, Eun Young;Chae, Soo-Young;Hong, Jong-Pil;Lee, Hye-Eun;Park, Eun Joon;Moon, Ji-hye;Park, Tae-Sung;Roh, Mi-Young;Kim, Ok Rye;Kim, Sang Gyu;Kim, Dae Young;Lee, Sun Yi;Cho, Myeong Cheoul
    • Journal of Life Science
    • /
    • v.27 no.10
    • /
    • pp.1111-1120
    • /
    • 2017
  • This study was conducted to select pepper lines that were tolerant to excessive water injury among the pepper germplasm and investigate the genetic characteristics of those lines to contribute to the breeding of pepper cultivars with stable productivity in abnormal weather. Each of the tolerant and susceptible lines went through immersion treatment, and differentially expressed genes between them were analyzed. The tolerant line showed increased expression of the CA02g26670 gene, which is involved in the CONSTANS protein pathway and regulation of flowering by day length, but it exhibited decreased expressions of CA01g21450, CA01g22480, CA01g34470, CA02g00370 and CA02g00380. The susceptible line showed increased gene expressions of CA02g09720, CA02g21290, CA03g16520, CA07g 02110, and CA12g17910, which are involved in the inhibition of proteolytic enzyme activity, DNA binding, inhibition of cell wall-degrading enzyme, and inhibition of nodulin, respectively. Meanwhile the expressions of CA02g02820, CA03g21390, CA06g17700 and CA07g18230 decreased in the susceptible line, in relation to calcium-ion binding, high temperature, synthesis of phosphocholine and cold stress, respectively. The expressions of genes related to apoptosis and peroxidase increased, while that of CA02g16990, which functions as a nucleoside transporter, decreased in both the tolerant and susceptible lines. Based on the different gene expressions between the tolerant and susceptible lines, further studies are needed on breeding abiotic stress-tolerant lines.

Research on Immune Responses Induced by Salmonella Typhimurium Infectionin CRIP1-Deficient Condition (CRIP1결손조건 하에서 Salmonella Typhimurium 감염에 의해 유도되는 면역반응에 관한 연구)

  • Dongju Seo;Se-Hui Lee;Sun Park;Hyeyun Kim;Jin-Young Yang
    • Journal of Life Science
    • /
    • v.34 no.1
    • /
    • pp.48-58
    • /
    • 2024
  • Salmonella is a common food-borne intracellular bacterial pathogen that has triggered significant public health concerns. Salmonella hosts' genetic factors play a pivotal role in determining their susceptibility to the pathogen. Cysteine-rich intestinal protein 1 (CRIP1), a member of LIM/double zinc finger protein family, is widely expressed in humans, such as in the lungs, spleen, and especially the gut. Recently, CRIP1 has been reported as a key marker of several immune disorders; however, the effect of CRIP1 on bacterial infection remains unknown. We aimed to elucidate the relationship between Salmonella infection and CRIP1 gene deficiency, as Salmonella spp. is known to invade the Peyer's patches of the small intestine, where CRIP1 is highly expressed. We found that CRIP1-deficient conditions could not alter the characteristics of bone marrow-derived myeloid cells in terms of phagocytosis on macrophages and the activation of costimulatory molecules on dendritic cells using ex vivo differentiation. Moreover, flow cytometry data showed comparable levels of MHCII+CD11b+CD11c+ dendritic cells and MHCII+F4/80+CD11b+ macrophages between WT and CRIP1 knockout (KO) mice. Interestingly, the basal population of monocytes in the spleen and neutrophils in MLNs is more abundant in a steady state of CRIP1 KO mice than WT mice. Here, we demonstrated that the CRIP1 genetic factor plays dispensable roles in host susceptibility to Salmonella Typhimurium infections and the activation of myeloid cells. In addition, differential immune cell populations without antigen exposure in CRIP1 KO mice suggest that the regulation of CRIP1 expression may be a novel immunotherapeutic approach to various infectious diseases.

Chemical Composition and Antitumor Apoptogenic Activity of Methylene Chloride Extracts from the Leaves of Zanthoxylum schinifolium (Zanthoxylum schinifolium잎의 methylene chloride 추출물의 화학적 조성 및 암세포에 대한 세포자살 유도활성과 그 작용기전)

  • Kim Jun-Seok;Jun Do-Youn;Woo Mi-Hee;Rhee In-Koo;Kim Young-Ho
    • Journal of Life Science
    • /
    • v.16 no.3 s.76
    • /
    • pp.546-554
    • /
    • 2006
  • To understand antitumor activity of Zanthoxylum schinfolium, which has been used as an aromatic and medicinal plant in Korea, the cytotoxic effect of various organic solvent extracts of its leaves on human tumor cells were investigated. Among these extracts such as methanol extract (SL-13), methylene chloride extract (SL-14), ethyl acetate extract (SL-15), n-butanol extract (SL-16), and residual fraction (SL-17), SL-14 appeared to contain the most cytotoxic activity against leukemia and breast cancer cells tested. The methylene chloride extra.1 (SL-14) possessed an apoptogenic activity causing apoptotic DNA fragmentation of human acute leukemia Jurkat T cells via mitochondrial cytochrome c release into cytoplasm, subsequent activation of caspase-9 and caspase-3, and cleavage of PARP, which could be negatively regulated by antiapoptotic protein Bcl-xL. The GC-MS analysis of SL-14 revealed that the twenty-two ingredients of SL-14 were 9,19-cyclolanost-24-en-3-ol (15.1%), 2-a-methyl-17, b-hop-21-ene (15.1%), 15-methyl-2,3-dihydro-1H benzazepin (11.95%), phytol (10.38%), lupeol (9.92%), 12-methylbenzofuran (8.23%), hexadecanoic acid (5.96%), cis,cis,cis-9,12,15-octadecatrienoic acid-methyl-ester (5.49%), 9,12,15-octadecatrienoic acid-methylester (3.59%), 15-methyl-4-(1-methylethylidene)-2-(4-nitrophenyl) (3.36%), hexadecanoic acid methyl ester (1.93%), vitamine E (1.88%), beta-amyrin (0.96%), and auraptene (0.89%). These results demonstrate that the cytotoxicity of the methylene chloride extract of the leaves of Z. schinifolium toward Jurkat T cells is mainly attributable to apoptosis mediated by mitochondria-dependent caspase cascade regulated by Bcl-xL, and provide an insight into the mechanism underlying antitumor activity of the edible plant Z. schinifolium.