• Title/Summary/Keyword: genetic regulation

Search Result 497, Processing Time 0.029 seconds

Biosynthetic Regulation of Intracellular Invertase from Alkalophilic and Thermoplilic Bacillus cereus TA-11 (호알칼리성, 고온성 Bacillus cereus TA-11으로 생산된 세포내 Invertase의 생합성 조절)

  • Yi, Sung-Hun;Song, Jung-Eun;Lee, Jong-Soo
    • The Journal of Natural Sciences
    • /
    • v.18 no.1
    • /
    • pp.29-38
    • /
    • 2007
  • Regulation of invertase biosynthesis was studied with alkalophilic and thermophilic Bacillus cereus TA-11. Biosynthesis of invertase in Bacillus cereus TA-11 was effectively induced in the presence of 10 mM of sucrose for 180 min and 25 mM of raffinose for 90 min, respectively. Glucose repressed the invertase induction by sucrose and as late addition time of glucose, invertase formation was increased, indicating that glucose repression was occurred by inducer exclusion. Catabolite repression was not reduced by the addition of cAMP for 180 min of induction.

  • PDF

A Study for Smart Overload Vehicle Regulation System (지능형 과적단속을 위한 시스템 구축 연구)

  • Jo, Byung-Wan;Yoon, Kwang-Won;Park, Jung-Hoon;Choi, Ji-Sun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.399-404
    • /
    • 2011
  • Overload vehicles have demoralizing influence upon the social overhead capital, economics of nation, traffic flow and road safe as various components. Accordingly, this study established a ubiquitous sensor network system to develop an intelligent regulation system to monitor overloaded vehicles in motion. and Unlike WIM, after detecting the axle of driving vehicles by measuring deformation of roads, this system calculates the weights of vehicles by using signals from the strain sensors installed under the road and an analysis method. Also the study conducted an simulation test for vehicle load analysis using genetic algorithm. and tested wireless sensor for USN system.

Application of Temperature-Sensitive Mutations to Oncogene Studies in Drosophila

  • Baek, Kwang-Hyun
    • Archives of Pharmacal Research
    • /
    • v.22 no.3
    • /
    • pp.229-231
    • /
    • 1999
  • Recessive oncogenes are genetic functions important in the regulation of tissue growth and differentiation. These genetic functions are defined on the basis of the phenotype expressed by homozygotes. Defining the role of these genes in normal developmental and physiological processes is important to the development of accurate models of the normal regulation of growth and differentiation. Drosophila can be a good system to investigate the neoplastic mechanism of oncogenes and provide a greater understanding in the developmental progression of both invertebrates and vertebrates and vertebrates. The lethal (2) giant larvae gene is a recessive oncogene of Drosophila and temperature sensitive mutations of this gene have been isolated. Here, the application of temperature-sensitive mutations in Drosophila oncogene studies is discussed.

  • PDF

Multi-omics integration strategies for animal epigenetic studies - A review

  • Kim, Do-Young;Kim, Jun-Mo
    • Animal Bioscience
    • /
    • v.34 no.8
    • /
    • pp.1271-1282
    • /
    • 2021
  • Genome-wide studies provide considerable insights into the genetic background of animals; however, the inheritance of several heritable factors cannot be elucidated. Epigenetics explains these heritabilities, including those of genes influenced by environmental factors. Knowledge of the mechanisms underlying epigenetics enables understanding the processes of gene regulation through interactions with the environment. Recently developed next-generation sequencing (NGS) technologies help understand the interactional changes in epigenetic mechanisms. There are large sets of NGS data available; however, the integrative data analysis approaches still have limitations with regard to reliably interpreting the epigenetic changes. This review focuses on the epigenetic mechanisms and profiling methods and multi-omics integration methods that can provide comprehensive biological insights in animal genetic studies.

Genetic Regulation of Cellular Responses and Signal Targeting Pathways Invoked by an Environmental Stress (환경 스트레스에 의한 세포 내 신호의 이동 경로와 유전적 조절)

  • Kim, Il-Sup;Kim, Hyun-Young;Kang, Hong-Gyu;Yoon, Ho-Sung
    • Korean Journal of Environmental Biology
    • /
    • v.26 no.4
    • /
    • pp.377-384
    • /
    • 2008
  • A cell is the product of a long period of evolution and can be represented as an optimized system (homeostasis). Stimuli from the outside environment are received by sensory apparatus on the surface of the cell and transferred through complicated pathways and eventually regulate gene expression. These signals affect cell physiology, growth, and development, and the interaction among genes in the signal transduction pathway is a critical part of the regulation. In this study, the interactions of deletion mutants and overexpression of the extracopies of the genes were used to understand their relationships to each other. Also, green fluorescent protein (GFP reporter gene) was fused to the regulatory genes to elucidate their interactions. Cooverexpression of the two genes in extracopy plasmids suggested that patS acts at the downstream of hetR in the regulatory network. The experiments using gfp fusion in different genetic background cells also indicated the epistasis relationships between the two genes. A model describing the regulatory network that controls cell development is presented.

Effect of Environmental Pre-treatment on Expression of Blister Rust Resistance in Pinus monticola (oral)

  • Woo, K.S.;Kim, Y.J.;Mcdonald, G.I.;Fins, L.
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.112.2-112
    • /
    • 2003
  • Levels of blister rust infection (from Cronartium ribicola) varied in western white pine(Pinus monticola Dougl.) seedlings grown in two nurseries in northern Idaho. This observation suggested the potential importance of environmental components operating on the blister rust pathosystem. In an experiment designed to test the influence of environmental conditions at two nurseries, seedlings of a single genetic source were unintentionally held in cold storage for 6 months longer at one nursery than at the other. Subsequently, these seedlings, which had been growing under nursery conditions for 7 months or 1 month, were inoculated with blister rust spores on September 9th, 1999. Infection efficiency measured on the seedlings with only 1 month of growth was 70X greater than on the seedlings that had 7 months for their new growth to mature. Results from this nursery test and infection levels of northern Idaho resistant selections in mild climates suggest that expression of genes related to rust resistance in western white pine can be manipulated by regulation of phonology. If so, several new molecular tools may be employed to enhance our understanding of environmental regulation of genes for blister rust resistance.

  • PDF

Genetic Analysis of absR, a new abs locus of Streptomyces coelicolor

  • Park, Uhn-Mee;Suh, Joo-Won;Hong, Soon-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.169-175
    • /
    • 2000
  • The filamentous soil bacterium Streptomyces coelicolor is known to produce four distinct antibiotics. The simultaneous global regulation for the biosynthesis of those four antibiotics was previously confirmed by absA and absB mutations that blocked all four antibiotics' biosynthesis without influencing their morphological differentiation. To study the complex regulatory cascade that controls the secondary metabolism in Streptomyces, a new abs-like mutation was characterized. namely absR, which is slightly leaky on a complete R2YE medium, yet tight on a minimal medium. A genetic analysis of the absR locus indicated that it is located at 10 o'clock on the genetic map, near the site of absA. A cloned copy of the absA gene that encoded bacterial two-component regulatory kinases did not restore antibiotic biosyntheis to the absR mutant. Accordingly, it is proposed that absR is another abs-type mutation which is less tight than the previously identified absA or absB mutations income medium conditions, and can be used to characterize another global regulatory gene for secondary metabolete formation in S. coelicolor.

  • PDF

Application of Bacterial Foraging Algorithm and Genetic Algorithm for Selective Voltage Harmonic Elimination in PWM Inverter

  • Maheswaran, D.;Rajasekar, N.;Priya, K.;Ashok kumar, L.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.944-951
    • /
    • 2015
  • Pulse Width Modulation (PWM) techniques are increasingly employed for PWM inverter fed induction motor drive. Among various popular PWM methods used, Selective Harmonic Elimination PWM (SHEPWM) has been widely accepted for its better harmonic elimination capability. In addition, using SHEPWM, it is also possible to maintain better voltage regulation. Hence, in this paper, an attempt has been made to apply Bacterial Foraging Algorithm (BFA) for solving selective harmonic elimination problem. The problem of voltage harmonic elimination together with output voltage regulation is drafted as an optimization task and the solution is sought through proposed method. For performance comparison of BFA, the results obtained are compared with other techniques such as derivative based Newton-Raphson method, and Genetic Algorithm. From the comparison, it can be observed that BFA based approach yields better results. Further, it provides superior convergence, reduced computational burden, and guaranteed global optima. The simulation results are validated through experimental findings.

Multiple Sequence Aligmnent Genetic Algorithm (진화 알고리즘을 사용한 복수 염기서열 정렬)

  • Kim, Jin;Song, Min-Dong;Choi, Hong-Sik;Chang, Yeon-Ah
    • Korean Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.115-120
    • /
    • 1999
  • Multiple Sequence Alignment of DNA and protem sequences is a imnport'mt tool in the study of molecular evolution, gene regulation. and prolein suucture-function relationships. Progressive pairwise alignment method generates multiple sequence alignment fast but not necessarily with optimal costs. Dynamic programming generates multiple sequence alig~~menl with optimal costs in most cases but long execution time. In this paper. we suggest genetlc algorithm lo improve the multiple sequence alignment generated from the cnlent methods, describe the design of the genetic algorithm, and compare the multiple sequence alignments from 0111 method and current methods.

  • PDF