• 제목/요약/키워드: genetic programming(GP)

검색결과 82건 처리시간 0.019초

유전적 프로그래밍을 이용한 응답면의 모델링 II: 최적의 다항식 생성 (Response Surface Modeling by Genetic Programming II: Search for Optimal Polynomials)

  • 이욱;김남준
    • 정보기술응용연구
    • /
    • 제3권3호
    • /
    • pp.25-40
    • /
    • 2001
  • 본 논문에서는 유전적 프로그래밍(Genetic Programing)을 이용하여 최적의 다항식을 생성하는 기법을 제시하고자 한다. 다항식은 비선형성이 큰 응답면을 모델링해야 하며, 이를 위하여 GP 트리 생성시 2-3차 오더의 Taylor Series를 사용하는 방법을 시도하였다. 아울러 생서되는 다항식의 크기를 제어하기 위해서 GP 트리가 표현할 수 있는 다항식의 최대 차수를 제한함과 동시에 하나의 주 트리와 보 트리로 구성되는 GAGPT(Group of Additive Genetic Programming Trees) 사용을 모색하였다. 마지막으로 두 개의 응용 예를 통하여 본 방법의 유용성을 검증하였다.

  • PDF

유전적 프로그래밍을 이용한 응답면의 모델링 I : 방향도함수 기반의 Smoothering 기법 (Response Surface Modeling by Genetic Programming I: A Directional Derivative-Based Smoothering Method)

  • 연윤석;이욱
    • 정보기술응용연구
    • /
    • 제3권3호
    • /
    • pp.1-24
    • /
    • 2001
  • 본 논문은 최소한의 학습데이터를 사용하여 비선형의 응답면을 모델링할 수 있는 방안으로 유전적 프로그래밍을(Genetic Programming, GP)의 사용을 모색하였다. 이때 대두되는 가장 큰 문제는 GP 트리가 부족한 학습 데이터 때문에 심한 Overfilling 현상을 보인다는 점이다.이를 극복하기 위한 방법으로 DDBS (Directional Derivative-Based Smoothering) 기법을 제안하였고, 유용성을 검증하기 위해서 4 가지 응용 예를 보였다.

  • PDF

밝기변화에 강인한 Genetic Programming 기반의 비파라미터 다중 컬러 검출 모델 (Genetic Programming based Illumination Robust and Non-parametric Multi-colors Detection Model)

  • 김영균;권오성;조영완;서기성
    • 한국지능시스템학회논문지
    • /
    • 제20권6호
    • /
    • pp.780-785
    • /
    • 2010
  • 본 논문은 물체인식이나 영상추적에 사용되는 컬러검출을 위한 GP(Genetic Programming) 기반의 컬러검출 모델을 제안한다. 기존의 컬러검출은 기본적인 RGB 모델에 대한 선형, 비선형 함수의 변환을 사용하거나, 최적화 기법이나 학습기법에 의해 조명 변화에 개선된 컬러 모델을 사용하고 있다. 하지만 대부분의 경우 색상 채널간의 간섭에 의해 다양한 색상에 대한 분류가 어렵고, 조명변화에 강인하지 못하다. 본 연구에서는 GP의 최적화된 학습기법과 모델 생성 기법을 통해 조명변화에 강인하고, 다중의 색상 검출이 가능하며, 파라미터 설정이 필요 없는 컬러 모델을 제안한다. 제안된 방법을 다양한 색상과 조명환경이 다른 영상에 대해서 기존 컬러모델과 비교 분석하였다.

4족 보행로봇의 걸음새에 대한 Genetic Programming 기법과 Central Pattern Generator 기반 생성기법의 비교 연구 (A Comparative Study between Genetic Programming and Central Pattern Generator Based Gait Generation Methods for Quadruped Robots)

  • 현수환;조영완;서기성
    • 한국지능시스템학회논문지
    • /
    • 제19권6호
    • /
    • pp.749-754
    • /
    • 2009
  • 4족 보행로봇의 빠른 걸음새를 자동으로 생성하는 문제에 대해서 GP(Genetic Programming)와 CPG(Central Pattern Generator) 기반의 두 가지 방식을 비교한다. GP(Genetic Programming)를 이용한 관절좌표계 상에서의 걸음새 생성 기법은 발끝의 자취와 수 많은 자세 파라미터를 사용하는 대신에 적은수의 관절 궤적을 생성하므로 효율적이다. CPG는 뇌로부터의 입력을 받아서 진동적인 출력을 생성하는 신경회로로 고등생물의 걸음 원리를 수학적으로 모델링한 것이다. 바이올로이드로 구성된 4족 보행로봇에 대하여 Webots기반의 ODE 시뮬레이션을 통해 접근 기법들에 대한 최적화를 수행하고 결과를 비교 분석한다. 그리고, 구해진 시뮬레이션과 결과를 실제 로봇에 대해서 각 동작을 실행시켜 보면서 CPG와 GP 기반의 걸음새 방식의 실제적인 성능 및 특성을 고찰한다.

Genetic Programming을 이용한 코너 검출자의 자동생성 (Automated Generation of Corner Detectors Using Genetic Programming)

  • 김영균;서기성
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.580-585
    • /
    • 2009
  • 본 논문은 영상처리에 사용되는 코너점 추출을 위한 GP(Genetic Programming)기반의 코너 검출자를 소개한다. Harris와 SUSAN등 기존의 대표적인 코너 검출자들이 소개되어 왔고, 여러 가지 경험적인 알고리즘들이 연산 시간과 정확도 측면에서 이들 기법을 개선하기 위해서 연구되어 오고 있다. 이들 기법들은 코너점에 대한 특성을 고찰하여 이를 알고리즘화한 것으로 효율성이 높으나, 한편으로 기존의 방식이나 알고리즘에서 크게 벗어난 혁신적인 알고리즘을 발견하기에는 한계가 있다. 본 연구에서는 GP의 진화연산에 의해 자동적으로 코너 검출자를 생성함으로서 새로운 기법의 가능성을 발견하고자 한다. 제안된 방법을 다른 코너 검출자들과 테스트영상을 통해 비교 분석 하였다.

관절 공간에서의 GP 기반 진화기법을 이용한 4족 보행로봇의 걸음새 자동생성 (Automatic Gait Generation for Quadruped Robot Using a GP Based Evolutionary Method in Joint Space)

  • 서기성;현수환
    • 제어로봇시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.573-579
    • /
    • 2008
  • This paper introduces a new approach to develop a fast gait for quadruped robot using GP(genetic programming). Planning gaits for legged robots is a challenging task that requires optimizing parameters in a highly irregular and multidimensional space. Several recent approaches have focused on using GA(genetic algorithm) to generate gait automatically and shown significant improvement over previous results. Most of current GA based approaches used pre-selected parameters, but it is difficult to select the appropriate parameters for the optimization of gait. To overcome these problems, we proposed an efficient approach which optimizes joint angle trajectories using genetic programming. Our GP based method has obtained much better results than GA based approaches for experiments of Sony AIBO ERS-7 in Webots environment.

4족 보행로봇의 물체 인식 및 GP 기반 지능적 보행 (Objects Recognition and Intelligent Walking for Quadruped Robots based on Genetic Programming)

  • 김영균;현수환;장재영;서기성
    • 한국지능시스템학회논문지
    • /
    • 제20권5호
    • /
    • pp.603-609
    • /
    • 2010
  • 본 논문은 SURF(Speeded Up Robust Features)를 기반으로 한 대상 물체 인식 알고리즘과 GP(Genetic Programming)를 기반으로 한 직진, 회전, 정지, 후진 걸음새(gait) 자동 생성을 각각 구현한다. 그리고 이를 결합 하여, 대상을 인식하고 자율적으로 접근 및 추종할 수 있는 인식 기반 지능적인 보행 기법을 제안한다. 4족 보행 로봇의 걸음새는 GP를 사용하여 각 관절의 궤적에 대한 회귀분석으로 생성한다. 고속의 특징점 검출에 적합한 SURF를 사용해서 물체의 위치와 크기를 인식하고, 물체까지의 거리를 계산한다. 4족 보행로봇의 물체 인식 및 이를 통한 자율접근 보행 실험은 ODE(Open Dynamics Engine) 기반의 Webots 시뮬레이션과 실제 로봇에 대해서 수행된다.

가중 선형 연상기억을 채용한 유전적 프로그래밍과 그 공학적 응용 (Genetic Programming with Weighted Linear Associative Memories and its Application to Engineering Problems)

  • 연윤석
    • 한국CDE학회논문집
    • /
    • 제3권1호
    • /
    • pp.57-67
    • /
    • 1998
  • Genetic programming (GP) is an extension of a genetic algoriths paradigm, deals with tree structures representing computer programs as individuals. In recent, there have been many research activities on applications of GP to various engineering problems including system identification, data mining, function approximation, and so forth. However, standard GP suffers from the lack of the estimation techniques for numerical parameters of the GP tree that is an essential element in treating various engineering applications involving real-valued function approximations. Unlike the other research activities, where nonlinear optimization methods are employed, I adopt the use of a weighted linear associative memory for estimation of these parameters under GP algorithm. This approach can significantly reduce computational cost while the reasonable accurate value for parameters can be obtained. Due to the fact that the GP algorithm is likely to fall into a local minimum, the GP algorithm often fails to generate the tree with the desired accuracy. This motivates to devise a group of additive genetic programming trees (GAGPT) which consists of a primary tree and a set of auxiliary trees. The output of the GAGPT is the summation of outputs of the primary tree and all auxiliary trees. The addition of auxiliary trees makes it possible to improve both the teaming and generalization capability of the GAGPT, since the auxiliary tree evolves toward refining the quality of the GAGPT by optimizing its fitness function. The effectiveness of this approach is verified by applying the GAGPT to the estimation of the principal dimensions of bulk cargo ships and engine torque of the passenger car.

  • PDF

Tree-Structure-Aware Genetic Operators in Genetic Programming

  • Seo, Kisung;Pang, Chulhyuk
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.749-754
    • /
    • 2014
  • In this paper, we suggest tree-structure-aware GP (Genetic Programming) operators that heed tree distributions in structure space and their possible structural difficulties. The main idea of the proposed GP operators is to place the generated offspring of crossover and/or mutation in a specified region of tree structure space insofar as possible by biasing the tree structures of the altered subtrees, taking into account the observation that most solutions are found in that region. To demonstrate the effectiveness of the proposed approach, experiments on the binomial-3 regression, multiplexor and even parity problems are performed. The results show that the results using the proposed tree-structure-aware operators are superior to the results of standard GP for all three test problems in both success rate and number of evaluations.

Bitcoin Algorithm Trading using Genetic Programming

  • Monira Essa Aloud
    • International Journal of Computer Science & Network Security
    • /
    • 제23권7호
    • /
    • pp.210-218
    • /
    • 2023
  • The author presents a simple data-driven intraday technical indicator trading approach based on Genetic Programming (GP) for return forecasting in the Bitcoin market. We use five trend-following technical indicators as input to GP for developing trading rules. Using data on daily Bitcoin historical prices from January 2017 to February 2020, our principal results show that the combination of technical analysis indicators and Artificial Intelligence (AI) techniques, primarily GP, is a potential forecasting tool for Bitcoin prices, even outperforming the buy-and-hold strategy. Sensitivity analysis is employed to adjust the number and values of variables, activation functions, and fitness functions of the GP-based system to verify our approach's robustness.