• Title/Summary/Keyword: genetic programming(GP)

Search Result 82, Processing Time 0.021 seconds

Response Surface Modeling by Genetic Programming II: Search for Optimal Polynomials (유전적 프로그래밍을 이용한 응답면의 모델링 II: 최적의 다항식 생성)

  • Rhee, Wook;Kim, Nam-Joon
    • Journal of Information Technology Application
    • /
    • v.3 no.3
    • /
    • pp.25-40
    • /
    • 2001
  • This paper deals with the problem of generating optimal polynomials using Genetic Programming(GP). The polynomial should approximate nonlinear response surfaces. Also, there should be a consideration regarding the size of the polynomial, It is not desirable if the polynomial is too large. To build small or medium size of polynomials that enable to model nonlinear response surfaces, we use the low order Tailor series in the function set of GP, and put the constrain on generating GP tree during the evolving process in order to prevent GP trees from becoming too large size of polynomials. Also, GAGPT(Group of Additive Genetic Programming Trees) is adopted to help achieving such purpose. Two examples are given to demonstrate our method.

  • PDF

Response Surface Modeling by Genetic Programming I: A Directional Derivative-Based Smoothering Method (유전적 프로그래밍을 이용한 응답면의 모델링 I : 방향도함수 기반의 Smoothering 기법)

  • Yeun, Yun-Seog;Rhee, Wook
    • Journal of Information Technology Application
    • /
    • v.3 no.3
    • /
    • pp.1-24
    • /
    • 2001
  • This paper introduces the genetic programming algorithm(GP), which can approximate highly nonlinear functions, as a tool for the modeling of response surfaces. When the response surfaces is approximated, the very small or minimal teaming set should be used, and thus it is almost certain that GP trees will show overfilling that must be avoided at all costs. We present a novel method, calledDDBS(DirectionalDerivative-Based Smoothering), which very effectively eliminates the unwanted behaviors of GP trees such as large peaks, oscillations, and also overfitting. Four illustrative numerical examples are given to demonstrate the performance of the genetic programming algorithm that adopts DDBS.

  • PDF

Genetic Programming based Illumination Robust and Non-parametric Multi-colors Detection Model (밝기변화에 강인한 Genetic Programming 기반의 비파라미터 다중 컬러 검출 모델)

  • Kim, Young-Kyun;Kwon, Oh-Sung;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.780-785
    • /
    • 2010
  • This paper introduces GP(Genetic Programming) based color detection model for an object detection and tracking. Existing color detection methods have used linear/nonlinear transformatin of RGB color-model and improved color model for illumination variation by optimization or learning techniques. However, most of cases have difficulties to classify various of colors because of interference of among color channels and are not robust for illumination variation. To solve these problems, we propose illumination robust and non-parametric multi-colors detection model using evolution of GP. The proposed method is compared to the existing color-models for various colors and images with different lighting conditions.

A Comparative Study between Genetic Programming and Central Pattern Generator Based Gait Generation Methods for Quadruped Robots (4족 보행로봇의 걸음새에 대한 Genetic Programming 기법과 Central Pattern Generator 기반 생성기법의 비교 연구)

  • Hyun, Soo-Hwan;Cho, Young-Wan;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.6
    • /
    • pp.749-754
    • /
    • 2009
  • Two gait generation methods using GP(genetic programming) and CPG(Central Pattern Generator) are compared to develop a fast locomotion for quadruped robot. GP based technique is an effective way to generate few joint trajectories instead of the locus of paw positions and lots of stance parameters. The CPGs are neural circuits that generate oscillatory output from a input coming from the brain. Optimization for two proposed methods are executed and analysed using Webots simulation for the quadruped robot which is built by Bioloid. Furthermore, simulation results for two proposed methods are experimented in real quadruped robot and performances and motion features of GP and CPG based methods are investigated.

Automated Generation of Corner Detectors Using Genetic Programming (Genetic Programming을 이용한 코너 검출자의 자동생성)

  • Kim, Young-Kyun;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.4
    • /
    • pp.580-585
    • /
    • 2009
  • This paper introduces GP(Genetic Programming) based corner detectors for an image processing. Various empirical algorithms have been studied to improve computational speed and accuracy including typical approaches, such as Harris and SUSAN. The these techniques are highly efficient, because properties of corner points are inspected and reflected into the algorithms. However these approaches are limited in discovering an innovative algorithm. In this study, we try to discover a more efficient technique by creating corner detector automatically using evolution of GP. The proposed method is compared to the existing corner detectors for test images.

Automatic Gait Generation for Quadruped Robot Using a GP Based Evolutionary Method in Joint Space (관절 공간에서의 GP 기반 진화기법을 이용한 4족 보행로봇의 걸음새 자동생성)

  • Seo, Ki-Sung;Hyun, Soo-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.6
    • /
    • pp.573-579
    • /
    • 2008
  • This paper introduces a new approach to develop a fast gait for quadruped robot using GP(genetic programming). Planning gaits for legged robots is a challenging task that requires optimizing parameters in a highly irregular and multidimensional space. Several recent approaches have focused on using GA(genetic algorithm) to generate gait automatically and shown significant improvement over previous results. Most of current GA based approaches used pre-selected parameters, but it is difficult to select the appropriate parameters for the optimization of gait. To overcome these problems, we proposed an efficient approach which optimizes joint angle trajectories using genetic programming. Our GP based method has obtained much better results than GA based approaches for experiments of Sony AIBO ERS-7 in Webots environment.

Objects Recognition and Intelligent Walking for Quadruped Robots based on Genetic Programming (4족 보행로봇의 물체 인식 및 GP 기반 지능적 보행)

  • Kim, Young-Kyun;Hyun, Soo-Hwan;Jang, Jae-Young;Seo, Ki-Sung
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.5
    • /
    • pp.603-609
    • /
    • 2010
  • This paper introduces an objects recognition algorithm based on SURF(Speeded Up Robust Features) and GP(Genetic Programming) based gaits generation. Combining both methods, a recognition based intelligent walking for quadruped robots is proposed. The gait of quadruped robots is generated by means of symbolic regression for each joint trajectories using GP. A position and size of target object are recognized by SURF which enables high speed feature extraction, and then the distance to the object is calculated. Experiments for objects recognition and autonomous walking for quadruped robots are executed for ODE based Webots simulation and real robot.

Genetic Programming with Weighted Linear Associative Memories and its Application to Engineering Problems (가중 선형 연상기억을 채용한 유전적 프로그래밍과 그 공학적 응용)

  • 연윤석
    • Korean Journal of Computational Design and Engineering
    • /
    • v.3 no.1
    • /
    • pp.57-67
    • /
    • 1998
  • Genetic programming (GP) is an extension of a genetic algoriths paradigm, deals with tree structures representing computer programs as individuals. In recent, there have been many research activities on applications of GP to various engineering problems including system identification, data mining, function approximation, and so forth. However, standard GP suffers from the lack of the estimation techniques for numerical parameters of the GP tree that is an essential element in treating various engineering applications involving real-valued function approximations. Unlike the other research activities, where nonlinear optimization methods are employed, I adopt the use of a weighted linear associative memory for estimation of these parameters under GP algorithm. This approach can significantly reduce computational cost while the reasonable accurate value for parameters can be obtained. Due to the fact that the GP algorithm is likely to fall into a local minimum, the GP algorithm often fails to generate the tree with the desired accuracy. This motivates to devise a group of additive genetic programming trees (GAGPT) which consists of a primary tree and a set of auxiliary trees. The output of the GAGPT is the summation of outputs of the primary tree and all auxiliary trees. The addition of auxiliary trees makes it possible to improve both the teaming and generalization capability of the GAGPT, since the auxiliary tree evolves toward refining the quality of the GAGPT by optimizing its fitness function. The effectiveness of this approach is verified by applying the GAGPT to the estimation of the principal dimensions of bulk cargo ships and engine torque of the passenger car.

  • PDF

Tree-Structure-Aware Genetic Operators in Genetic Programming

  • Seo, Kisung;Pang, Chulhyuk
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.749-754
    • /
    • 2014
  • In this paper, we suggest tree-structure-aware GP (Genetic Programming) operators that heed tree distributions in structure space and their possible structural difficulties. The main idea of the proposed GP operators is to place the generated offspring of crossover and/or mutation in a specified region of tree structure space insofar as possible by biasing the tree structures of the altered subtrees, taking into account the observation that most solutions are found in that region. To demonstrate the effectiveness of the proposed approach, experiments on the binomial-3 regression, multiplexor and even parity problems are performed. The results show that the results using the proposed tree-structure-aware operators are superior to the results of standard GP for all three test problems in both success rate and number of evaluations.

Bitcoin Algorithm Trading using Genetic Programming

  • Monira Essa Aloud
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.7
    • /
    • pp.210-218
    • /
    • 2023
  • The author presents a simple data-driven intraday technical indicator trading approach based on Genetic Programming (GP) for return forecasting in the Bitcoin market. We use five trend-following technical indicators as input to GP for developing trading rules. Using data on daily Bitcoin historical prices from January 2017 to February 2020, our principal results show that the combination of technical analysis indicators and Artificial Intelligence (AI) techniques, primarily GP, is a potential forecasting tool for Bitcoin prices, even outperforming the buy-and-hold strategy. Sensitivity analysis is employed to adjust the number and values of variables, activation functions, and fitness functions of the GP-based system to verify our approach's robustness.