• 제목/요약/키워드: genetic optimization

검색결과 2,148건 처리시간 0.032초

Regional Science and Technology Resource Allocation Optimization Based on Improved Genetic Algorithm

  • Xu, Hao;Xing, Lining;Huang, Lan
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권4호
    • /
    • pp.1972-1986
    • /
    • 2017
  • With the advent of the knowledge economy, science and technology resources have played an important role in economic competition, and their optimal allocation has been regarded as very important across the world. Thus, allocation optimization research for regional science and technology resources is significant for accelerating the reform of regional science and technology systems. Regional science and technology resource allocation optimization is modeled as a double-layer optimization model: the entire system is characterized by top-layer optimization, whereas the subsystems are characterized by bottom-layer optimization. To efficaciously solve this optimization problem, we propose a mixed search method based on the orthogonal genetic algorithm and sensitivity analysis. This novel method adopts the integrated modeling concept with a combination of the knowledge model and heuristic search model, on the basis of the heuristic search model, and simultaneously highlights the effect of the knowledge model. To compare the performance of different methods, five methods and two channels were used to address an application example. Both the optimized results and simulation time of the proposed method outperformed those of the other methods. The application of the proposed method to solve the problem of entire system optimization is feasible, correct, and effective.

병렬 마이크로 유전자 알고리즘을 이용한 복합재 적층 구조물의 최적설계 (Optimal Design of Laminated Stiffened Composite Structures using a parallel micro Genetic Algorithm)

  • 이무근;김천곤
    • Composites Research
    • /
    • 제21권1호
    • /
    • pp.30-39
    • /
    • 2008
  • 본 논문에서는 기존의 유전자 알고리즘을 대신하여 병렬 마이크로 유전자 알고리즘을 사용한 복합재료 적층 구조물의 최적설계를 수행하였다. 마이크로 유전자 알고리즘은 한 세대 당 보통 5개의 개체로 해를 탐색한다 비록 세대를 구성하는 인구수는 적지만 공칭수렴 판단과 재초기화 과정을 통해 다양성을 제공하기 때문에 최적해 탐색이 가능하다. 2가지의 복합재 구조물의 최적화 문제를 가정하고 이를 마이크로 유전자 알고리즘을 사용하여 해를 구하였다. 효율성 판단을 위해서 기존의 유전자 알고리즘과 결과를 비교하였다. 두 문제 모두 마이크로 유전자 알고리즘이 비슷한 결과를 도출하면서도 약 70%의 계산량 감소를 보였다. 마이크로 유전자 알고리즘을 사용하여 일정 범위 내에서 변하는 하중을 받고 있는 복합재 적층 구조물의 최적설계를 수행하였다. 계산 결과 고정된 하중상태 하에서 얻은 최적해보다 하중 변화에 덜 민감한 설계변수를 얻을 수 있었다. 이상의 문제를 통해 다양한 설계변수를 갖는 복합재 적층 구조물의 최적설계의 한 방법으로서 마이크로 유전자 알고리즘이 효율적임을 확인하였다.

유전자 알고리즘을 이용한 2차원 강구조물의 최적설계 (Optimum Design of Two-Dimensional Steel Structures Using Genetic Algorithms)

  • 김봉익;권중현
    • 한국해양공학회지
    • /
    • 제21권2호
    • /
    • pp.75-80
    • /
    • 2007
  • The design variables for structural systems, in most practical designs, are chosen from a list of discrete values, which are commercially available sizing. This paper presents the application of Genetic Algorithms for determining the optimum design for two-dimensional structures with discrete and pseudocontinuous design variables. Genetic Algorithms are heuristic search algorithms and are effective tools for finding global solutions for discrete optimization. In this paper, Genetic Algorithms are used as the method of Elitism and penalty parameters, in order to improve fitness in the reproduction process. Examples in this paper include: 10 bar planar truss and 1 bay 8-story frame. Truss with discrete and pseudoucontinuous design variables and steel frame with W-sections are used for the design of discrete optimization.

혼합 유전 알고리즘을 이용한 GDP/MINLP로 표현된 공정 최적화 (Process Optimization Formulated in GDP/MINLP Using Hybrid Genetic Algorithm)

  • 송상옥;장영중;김구회;윤인섭
    • 제어로봇시스템학회논문지
    • /
    • 제9권2호
    • /
    • pp.168-175
    • /
    • 2003
  • A new algorithm based on Genetic Algorithms is proposed f3r solving process optimization problems formulated in MINLP, GDP and hybrid MINLP/GDP. This work is focused especially on the design of the Genetic Algorithm suitable to handle disjunctive programming with the same level of MINLP handling capability. Hybridization with the Simulated Annealing is experimented and many heuristics are adopted. Real and binary coded Genetic Algorithm initiates the global search in the entire search space and at every stage Simulated Annealing makes the candidates to climb up the local hills. Multi-Niche Crowding method is adopted as the multimodal function optimization technique. and the adaptation of probabilistic parameters and dynamic penalty systems are also implemented. New strategies to take the logical variables and constraints into consideration are proposed, as well. Various test problems selected from many fields of process systems engineering are tried and satisfactory results are obtained.

Optimal Design of a Squeeze Film Damper Using an Enhanced Genetic Algorithm

  • Ahn, Young-Kong;Kim, Young-Chan;Yang, Bo-Suk
    • Journal of Mechanical Science and Technology
    • /
    • 제17권12호
    • /
    • pp.1938-1948
    • /
    • 2003
  • This paper represents that an enhanced genetic algorithm (EGA) is applied to optimal design of a squeeze film damper (SFD) to minimize the maximum transmitted load between the bearing and foundation in the operational speed range. A general genetic algorithm (GA) is well known as a useful global optimization technique for complex and nonlinear optimization problems. The EGA consists of the GA to optimize multi-modal functions and the simplex method to search intensively the candidate solutions by the GA for optimal solutions. The performance of the EGA with a benchmark function is compared to them by the IGA (Immune-Genetic Algorithm) and SQP (Sequential Quadratic Programming). The radius, length and radial clearance of the SFD are defined as the design parameters. The objective function is the minimization of a maximum transmitted load of a flexible rotor system with the nonlinear SFDs in the operating speed range. The effectiveness of the EGA for the optimal design of the SFD is discussed from a numerical example.

구속조건의 효율적인 처리를 위한 유전자 알고리즘의 개발 (Development of Genetic Algorithms for Efficient Constraints Handling)

  • 조영석;최동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집A
    • /
    • pp.725-730
    • /
    • 2000
  • Genetic algorithms based on the theory of natural selection, have been applied to many different fields, and have proven to be relatively robust means to search for global optimum and handle discontinuous or even discrete data. Genetic algorithms are widely used for unconstrained optimization problems. However, their application to constrained optimization problems remains unsettled. The most prevalent technique for coping with infeasible solutions is to penalize a population member for constraint violation. But, the weighting of a penalty for a particular problem constraint is usually determined in the heuristic way. Therefore this paper proposes, the effective technique for handling constraints, the ranking penalty method and hybrid genetic algorithms. And this paper proposes dynamic mutation tate to maintain the diversity in population. The effectiveness of the proposed algorithm is tested on several test problems and results are discussed.

  • PDF

A V­Groove $CO_2$ Gas Metal Arc Welding Process with Root Face Height Using Genetic Algorithm

  • Ahn, S.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • 제3권2호
    • /
    • pp.15-23
    • /
    • 2003
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed, root opening and the output variables were bead height, bead width, penetration and back bead width. The number of level for each input variable is 8, 16, 8 and 3, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 3,072 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 48 experiments.

  • PDF

유전 알고리즘을 이용한 가스 메탈 아크 용접 공정의 최적 조건 설정에 관한 연구 (Determination on Optima Condition for a Gas Metal Arc Welding Process Using Genetic Algorithm)

  • 김동철;이세헌
    • Journal of Welding and Joining
    • /
    • 제18권5호
    • /
    • pp.63-69
    • /
    • 2000
  • A genetic algorithm was applied to an arc welding process to determine near optimal settings of welding process parameters which produce good weld quality. This method searches for optimal settings of welding parameters through systematic experiments without a model between input and output variables. It has an advantage of being able to find optimal conditions with a fewer number of experiments than conventional full factorial design. A genetic algorithm was applied to optimization of weld bead geometry. In the optimization problem, the input variables was wire feed rate, welding voltage, and welding speed and the output variables were bead height, bead width, and penetration. The number of level for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions, 2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions from less than 40 experiments.

  • PDF

Determination of optimal Conditions for a Gas Metal Arc Wending Process Using the Genetic Algorithm

  • Kim, D.;Rhee, S.
    • International Journal of Korean Welding Society
    • /
    • 제1권1호
    • /
    • pp.44-50
    • /
    • 2001
  • A genetic algorithm was applied to the arc welding process as to determine the near-optimal settings of welding process parameters that produce the good weld quality. This method searches for optimal settings of welding parameters through the systematic experiments without the need for a model between the input and output variables. It has an advantage of being capable to find the optimal conditions with a fewer number of experiments rather than conventional full factorial designs. A genetic algorithm was applied to the optimization of the weld bead geometry. In the optimization problem, the input variables were wire feed rate, welding voltage, and welding speed. The output variables were the bead height bead width, and penetration. The number of levels for each input variable is 16, 16, and 8, respectively. Therefore, according to the conventional full factorial design, in order to find the optimal welding conditions,2048 experiments must be performed. The genetic algorithm, however, found the near optimal welding conditions in less than 40 experiments.

  • PDF

An Early Warning Model for Student Status Based on Genetic Algorithm-Optimized Radial Basis Kernel Support Vector Machine

  • Hui Li;Qixuan Huang;Chao Wang
    • Journal of Information Processing Systems
    • /
    • 제20권2호
    • /
    • pp.263-272
    • /
    • 2024
  • A model based on genetic algorithm optimization, GA-SVM, is proposed to warn university students of their status. This model improves the predictive effect of support vector machines. The genetic optimization algorithm is used to train the hyperparameters and adjust the kernel parameters, kernel penalty factor C, and gamma to optimize the support vector machine model, which can rapidly achieve convergence to obtain the optimal solution. The experimental model was trained on open-source datasets and validated through comparisons with random forest, backpropagation neural network, and GA-SVM models. The test results show that the genetic algorithm-optimized radial basis kernel support vector machine model GA-SVM can obtain higher accuracy rates when used for early warning in university learning.