• Title/Summary/Keyword: genetic networks

Search Result 550, Processing Time 0.026 seconds

Neo Fuzzy Set-based Polynomial Neural Networks involving Information Granules and Genetic Optimization

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.3-5
    • /
    • 2005
  • In this paper. we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C-Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

The optimization of fuzzy neural network using genetic algorithms and its application to the prediction of the chaotic time series data (유전 알고리듬을 이용한 퍼지 신경망의 최적화 및 혼돈 시계열 데이터 예측에의 응용)

  • Jang, Wook;Kwon, Oh-Gook;Joo, Young-Hoon;Yoon, Tae-Sung;Park, Jin-Bae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.708-711
    • /
    • 1997
  • This paper proposes the hybrid algorithm for the optimization of the structure and parameters of the fuzzy neural networks by genetic algorithms (GA) to improve the behaviour and the design of fuzzy neural networks. Fuzzy neural networks have a distinguishing feature in that they can possess the advantage of both neural networks and fuzzy systems. In this way, we can bring the low-level learning and computational power of neural networks into fuzzy systems and also high-level, human like IF-THEN rule thinking and reasoning of fuzzy systems into neural networks. As a result, there are many research works concerning the optimization of the structure and parameters of fuzzy neural networks. In this paper, we propose the hybrid algorithm that can optimize both the structure and parameters of fuzzy neural networks. Numerical example is provided to show the advantages of the proposed method.

  • PDF

Optimal Structure of Wavelet Neural Network Systems using Genetic Algorithm (유전 알고리즘 이용한 웨이블릿 신경회로망의 최적 구조 설계)

  • 이창민;서재용;진홍태
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.338-342
    • /
    • 2000
  • In order to approximate a nonlinear function, wacelet neural networks combining wacelet theory and neural networks have been proposed as an alternative to conventional multi-layered neural networks. wacelet neural networks provide better approximating performance than conventional neural networks. In this paper, an effective method to construct an optimal wavelet neural network is proposed using genetic alogorithm. Genetic Algorithm is used to determine dilationa and translations of wavelet basic functions of wavelet neural networks. Then, these determined dilations dilations and translations, wavelet neural networks are funther trained by back propagation learning algorithm. The effectiveness of the final network is verified thrifigh the approximation result of a nonlinear function and comparison with conventional neural networks.

  • PDF

Genetic Algorithm based Pathfinding System for Analyzing Networks (네트워크 분석을 위한 유전 알고리즘 기반 경로탐색 시스템)

  • Kim, Jun-Woo
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.1
    • /
    • pp.119-130
    • /
    • 2014
  • This paper proposes GAPS, a practical genetic algorithm based pathfinding system for conveniently analyzing various networks. To this end, the GAPS is developed through integration of the intuitive graphic user interface for network modeling, the database management system for managing the data generated in modeling and exploring procedures, and a simple genetic algorithm for analyzing a wide range of networks. Especially, previous genetic algorithms are not appropriate for analyzing the networks with many dead-ends where there are few feasible paths between the given two nodes, however, GAPS is based on the genetic algorithm with the fitness function appropriate for evaluating both feasible and infeasible paths, which enables GAPS to analyze a wide range of networks while maintaining the diversity of the population. The experiment results reveal that GAPS can be used to analyze both networks with many dead-ends and networks with few dead-ends conveniently, and GAPS has several advantages over the previous genetic algorithms for pathfinding problems.

Design of Genetic Algorithms-based Fuzzy Polynomial Neural Networks Using Symbolic Encoding (기호 코딩을 이용한 유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크의 설계)

  • Lee, In-Tae;Oh, Sung-Kwun;Choi, Jeoung-Nae
    • Proceedings of the KIEE Conference
    • /
    • 2006.04a
    • /
    • pp.270-272
    • /
    • 2006
  • In this paper, we discuss optimal design of Fuzzy Polynomial Neural Networks by means of Genetic Algorithms(GAs) using symbolic coding for non-linear data. One of the major subject of genetic algorithms is representation of chromosomes. The proposed model optimized by the means genetic algorithms which used symbolic code to represent chromosomes. The proposed gFPNN used a triangle and a Gaussian-like membership function in premise part of rules and design the consequent structure by constant and regression polynomial (linear, quadratic and modified quadratic) function between input and output variables. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF

Evolutionary designing neural networks structures using genetic algorithm

  • Itou, Minoru;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.43.2-43
    • /
    • 2001
  • In this paper, we consider the problems of the evolutionary designed neural networks structures by genetic algorithm. Neural networks has been applied to various application fields since back-propagation algorithm was proposed, e.g. function approximation, pattern or character recognition and so on. However, one of difficulties to use the neural networks. It is how to design the structure of the neural network. Researchers and users design networks structures and training parameters such as learning rate and momentum rate and so on, by trial and error based on their experiences. In the case of designing large scales neural networks, it is very hard work for manually design by try and error. For this difficulty, various structural learning algorithms have been proposed. Especially, the technique of using genetic algorithm for networks structures design has been ...

  • PDF

Optimal Identification of Nonlinear Process Data Using GAs-based Fuzzy Polynomial Neural Networks (유전자 알고리즘 기반 퍼지 다항식 뉴럴네트워크를 이용한 비선형 공정데이터의 최적 동정)

  • Lee, In-Tae;Kim, Wan-Su;Kim, Hyun-Ki;Oh, Sung-Kwun
    • Proceedings of the KIEE Conference
    • /
    • 2005.05a
    • /
    • pp.6-8
    • /
    • 2005
  • In this paper, we discuss model identification of nonlinear data using GAs-based Fuzzy Polynomial Neural Networks(GAs-FPNN). Fuzzy Polynomial Neural Networks(FPNN) is proposed model based Group Method Data Handling(GMDH) and Neural Networks(NNs). Each node of FPNN is expressed Fuzzy Polynomial Neuron(FPN). Network structure of nonlinear data is created using Genetic Algorithms(GAs) of optimal search method. Accordingly, GAs-FPNN have more inflexible than the existing models (in)from structure selecting. The proposed model select and identify its for optimal search of Genetic Algorithms that are no. of input variables, input variable numbers and consequence structures. The GAs-FPNN model is select tuning to input variable number, number of input variable and the last part structure through optimal search of Genetic Algorithms. It is shown that nonlinear data model design using Genetic Algorithms based FPNN is more usefulness and effectiveness than the existing models.

  • PDF

Handwritten Digit Recognition with Softcomputing Techniques

  • Cho, Sung-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.06a
    • /
    • pp.707-712
    • /
    • 1998
  • This paper presents several softcomputing techniques such as neural networks, fuzzy logic and genetic algorithms : Neural networks as brain metaphor provide fundamental structure, fuzzy logic gives a possibility to utilize top-down knowledge from designer, and genetic algorithms as evolution metaphor determine several system parameters with the process of bottom up development. With these techniques, we develop a pattern recognizer which consists of multiple neural networks aggregated by fuzzy integral in which genetic algorithms determine the fuzzy density values. The experimental results with the problem of recognizing totally unconstrained handwritten numeral show that the performance of the proposed method is superior to that of conventional methods.

  • PDF

A Study on Optimal Design of Composite Materials using Neural Networks and Genetic Algorithms (신경회로망과 유전자 알고리즘을 이용한 복합재료의 최적설계에 관한 연구)

  • 김민철;주원식;장득열;조석수
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.501-507
    • /
    • 1997
  • Composite material has very excellent mechanical properties including tensile stress and specific strength. Especially impact loads may be expected in many of the engineering applications of it. The suitability of composite material for such applications is determined not only by the usual paramenters, but its impactor energy-absorbing properties. Composite material under impact load has poor mechanical behavior and so needs tailoring its structure. Genetic algorithms(GA) is probabilistic optimization technique by principle of natural genetics and natural selection and neural networks(NN) is useful for prediction operation on the basis of learned data. Therefore, This study presents optimization techniques on the basis of genetic algorithms and neural networks to minimum stiffness design of laminated composite material.

  • PDF

Optimal structure of wavelet neural network systems using genetic algorithm (유전 알고리듬을 이용한 웨이블릿 신경회로망의 최적 구조 설계)

  • 이창민;서재용;전홍태
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2000.05a
    • /
    • pp.126-129
    • /
    • 2000
  • In order to approximate a nonlinear function, wavelet neural networks combining wavelet theory and neural networks have been proposed as an alterantive to coventional multi-layered neural networks. Wavelet neural networks provide better approximating performance than conventional neural networks. In this paper, an effective method to construct an optimal wavelet neural network is proposed using genetic algorithm. This is verified through experimental results.

  • PDF