• Title/Summary/Keyword: genetic markers

Search Result 1,455, Processing Time 0.029 seconds

Genetic Differences and Variation of Ascidians, Halocynthia roretzi von Drasche and H. hilgendorfi Oka Identified by PCR Analysis

  • Yoon, Jong-Man;Kim, Jong-Yeon
    • Development and Reproduction
    • /
    • v.15 no.4
    • /
    • pp.359-364
    • /
    • 2011
  • The seven selected primers OPA-02, OPA-04, OPA-18, OPD-07, OPD-08, OPD-15 and OPD-16 were used to generate unique shared loci to each species and shared loci by the two species. The hierarchical dendrogram indicates three main branches: cluster 1 (RORETZI 01~RORETZI 11) and cluster 2 (HILGENDORF 12~HILGENDORF 22) from two geographic populations of ascidians, Halocynthia roretzi and H. hilgendorfi. The shortest genetic distance displaying significant molecular difference was between individuals' HILGENDORF no. 14~HILGENDORF no. 19 (genetic distance =0.008). Ultimately, individual no. 02 of the RORETZI ascidian was most distantly related to HILGENDORF no. 21 (genetic distance=0.781). These results demonstrate that the H. roretzi population is genetically different from the H. hilgendorfi population. From what has been said above, the potential of PCR analysis to identify diagnostic markers for the identification of two ascidian populations has been demonstrated. Generally speaking, using a variety of decamer primers, this PCR method has been applied to identify specific markers particular to line, species and geographical population, as well as genetic diversity/polymorphism in diverse species of organisms.

Application of RAPD markers for characterization of ${\gamma}$-ray-induced rose mutants and assessment of genetic diversity

  • Chakrabarty, D.;Datta, S.K.
    • Plant Biotechnology Reports
    • /
    • v.4 no.3
    • /
    • pp.237-242
    • /
    • 2010
  • Six parent and their 12 gamma ray-induced somatic flower colour mutants of garden rose were characterized to discriminate the mutants from their respective parents and understanding the genetic diversity using Random amplification of polymorphic DNA (RAPD) markers. Out of 20 primers screened, 14 primers yielded completely identical fragments patterns. The other 7 primers gave highly polymorphic banding patterns among the radiomutants. All the cultivars were identified by using only 7 primers. Moreover, individual mutants were also distinguished by unique RAPD marker bands. Based on the presence or absence of the 48 polymorphic bands, the genetic variations within and among the 18 cultivars were measured. Genetic distance between all 18 cultivars varied from 0.40 to 0.91, as revealed by Jaccard's coefficient matrix. A dendrogram was constructed based on the similarity matrix using the Neighbor Joining Tree method showed three main clusters. The present RAPD analysis can be used not only for estimating genetic diversity present in gamma ray-induced mutants but also for correct identification of mutant/new varieties for their legal protection under plant variety rights.

Genetic Diversity of Myanmar and Indonesia Native Chickens Together with Two Jungle Fowl Species by Using 102 Indels Polymorphisms

  • Maw, Aye Aye;Shimogiri, Takeshi;Riztyan, Riztyan;Kawabe, Kotaro;Kawamoto, Yasuhiro;Okamoto, Shin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.7
    • /
    • pp.927-934
    • /
    • 2012
  • The efficiency of insertion and/or deletion (indels) polymorphisms as genetic markers was evaluated by genotyping 102 indels loci in native chicken populations from Myanmar and Indonesia as well as Red jungle fowls and Green jungle fowls from Java Island. Out of the 102 indel markers, 97 were polymorphic. The average observed and expected heterozygosities were 0.206 to 0.268 and 0.229 to 0.284 in native chicken populations and 0.003 to 0.101 and 0.012 to 0.078 in jungle fowl populations. The coefficients of genetic differentiation (Gst) of the native chicken populations from Myanmar and Indonesia were 0.041 and 0.098 respectively. The genetic variability is higher among native chicken populations than jungle fowl populations. The high Gst value was found between native chicken populations and jungle fowl populations. Neighbor-joining tree using genetic distance revealed that the native chickens from two countries were genetically close to each other and remote from Red and Green jungle fowls of Java Island.

Identification of Quantitative Trait Loci Associated with Traits of Soybean for Sprout

  • Lee, Suk-Ha;Park, Keum-Yong;Lee, Hong-Suk;H. Roger Boerma
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.44 no.2
    • /
    • pp.166-170
    • /
    • 1999
  • The identification of quantitative trait loci (QTL) has the potential to enhance the efficiency of im- proving food processing traits of soybean. In this study, 92 restriction fragment length polymorphism (RFLP) loci and two morphological markers (W$_1$ and T) were used to identify QTL associated with food processing traits of soybean for sprout in 83 F$_2$-derived lines from a cross of 'Pureun' x 'Jinpum 2'. The genetic map consisted of 76 loci which covered about 760 cM and converged into 20 linkage groups. Eighteen markers remained unlinked. Phenotypic data were collected for hypocotyl length, abnormal seedling rate, and sprout yield seven days after seed germination at 2$0^{\circ}C$. Based on the single-factor analysis of variance, eight independent markers were associated with hypocotyl length. Four of seven markers associated with abnormal seedling rate were identified as independent. Seven loci were associated with sprout yield. For three different traits, much of genetic variation was explained by the identified QTL in this population. Several RFLP markers in linkage group (LG) Bl were detected as being associated with three traits, providing a genetic explanation for the biological correlation of sprout yield with hypocotyl length (r=OA07***) and with abnormal seedling rate (r=-406***).

  • PDF

Genetic diversity assessment of Aconitum coreanum (H. Lév.) Rapaics (Ranunculaceae), an endangered plant species in Korea, using microsatellite markers

  • Won, Hyosig;Yun, Young-Eun;Kwak, Myounghai;Han, Jeong Eun
    • Journal of Species Research
    • /
    • v.1 no.2
    • /
    • pp.224-231
    • /
    • 2012
  • To assess the genetic diversity of Aconitum coreanum (Ranunculaceae) populations in Korea, we have amplified and sequenced eight organellar marker regions, and developed and analyzed microsatellite markers. No sequence variation was detected from the eight organellar markers. Ten microsatellites were developed using Next Generation Sequencing and two microsatellite markers, AK_CA03 and AK_CT07, were identified polymorphic and applied for 143 individuals of twelve A. coreanum populations. Four and five alleles were detected for the two microsatellite loci, respectively, and number of migrants ($N_m$) was estimated as 1.12586. Two microsatellite marker loci showed $F_{ST}$ of 0.205 and 0.275, respectively. The heterozygosity deficit, low level of among-population differentiation, small size of gene flow, and lack of sequence variation of the organellar markers suggest that A. coreanum is reproductively isolated from other Aconitum species and there has been continuous gene flow among the populations of A. coreanum or it has dispersed relatively recently after speciation. Though population pairwise $F_{ST}$'s presented significant geographic structure, further sampling and study will be necessary to confirm this.

Risk Assessment and Pharmacogenetics in Molecular and Genomic Epidemiology

  • Park, Sue-K.;Choi, Ji-Yeob
    • Journal of Preventive Medicine and Public Health
    • /
    • v.42 no.6
    • /
    • pp.371-376
    • /
    • 2009
  • In this article, we reviewed the literature on risk assessment (RA) models with and without molecular genomic markers and the current utility of the markers in the pharmacogenetic field. Epidemiological risk assessment is applied using statistical models and equations established from current scientific knowledge of risk and disease. Several papers have reported that traditional RA tools have significant limitations in decision-making in management strategies for individuals as predictions of diseases and disease progression are inaccurate. Recently, the model added information on the genetic susceptibility factors that are expected to be most responsible for differences in individual risk. On the continuum of health care, from diagnosis to treatment, pharmacogenetics has been developed based on the accumulated knowledge of human genomic variation involving drug distribution and metabolism and the target of action, which has the potential to facilitate personalized medicine that can avoid therapeutic failure and serious side effects. There are many challenges for the applicability of genomic information in a clinical setting. Current uses of genetic markers for managing drug therapy and issues in the development of a valid biomarker in pharmacogenetics are discussed.

Analysis of the Genetic Relationship among Mulberry (Morus spp.) Cultivars Using Inter-Simple Sequence Repeat (ISSR) Markers

  • Park, Eun-Ju;Kang, Min-Uk;Choi, Myoung-Seob;Sung, Gyoo-Byung;Nho, Si-Kab
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.41 no.2
    • /
    • pp.56-62
    • /
    • 2020
  • Mulberry (Morus spp. family: Moraceae) has prime importance in the sericulture industry, and its foliage is the only natural feed of the silkworm Bombyx mori L. Traditional classification methods using morphological traits were largely unsuccessful in assessing the diversity and relationships among different mulberry species because of environmental influences on the traits of interest. For these reasons, it is difficult to differentiate between the varieties and cultivars of Morus spp. In the present study, inter-simple sequence repeat (ISSR) markers were used to investigate the genetic diversity of 48 mulberry samples genotyped using nine ISSR primers. The ISSR markers exhibited polymorphisms (53.2%) among mulberry genotypes. Furthermore, similarity coefficient estimated for these ISSR markers was found to vary between 0.67 and 0.99 for the combined pooled data. The phenogram drawn using the UPGMA cluster method based on combined pooled data of the ISSR markers divided the 48 mulberry genotypes into seven major groups. No genetic association was found in the collection area, and there was a mixed pattern between the mulberry lines. The hybridization between different mulberry species is highly likely to be homogenized due to natural hybridization.

Genetic diversity assessment of lily genotypes native to Korea based on simple sequence repeat markers

  • Kumari, Shipra;Kim, Young-Sun;Kanth, Bashistha Kumar;Jang, Ji-Young;Lee, Geung-Joo
    • Journal of Plant Biotechnology
    • /
    • v.46 no.3
    • /
    • pp.158-164
    • /
    • 2019
  • Molecular characterization of different genotypes reveals accurate information about the degree of genetic diversity that helps to develop a proper breeding program. In this study, a total of 30 EST-based simple sequence repeat (EST-SSR) markers derived from trumpet lily (Lilium longiflorum) were used across 11 native lily species for their genetic relationship. Among these 30 markers, 24 SSR markers that showed polymorphism were used for evaluation of diversity spectrum. The allelic number at per locus ranged from 1 at SSR2 locus to 34 alleles at SSR15 locus, with an average of 11.25 alleles across 24 loci observed. The polymorphic information content, PIC, values ranged from 0.0523 for SSR9 to 0.9919 for SSR2 in all 24 loci with an average of 0.3827. The allelic frequency at every locus ranged from 0.81% at SSR2 locus to 99.6% at SSR14 locus. The pairwise genetic dissimilarity coefficient revealed the highest genetic distance with a value of 81.7% was in between L. dauricum and L. amabile. A relatively closer genetic distance was found between L. lancifolium and L. dauricum, L. maximowiczii and L. concolor, L. maximowiczii and L. distichum (Jeju), L. tsingtauense and L. callosum, L. cernuum and L. distichum (Jeju ecotype), of which dissimilarity coefficient was 50.0%. The molecular fingerprinting based on microsatellite marker could serve boldly to recognize genetically distant accessions and to sort morphologically close as well as duplicate accessions.

Genetic diversity analysis of Thai indigenous pig population using microsatellite markers

  • Charoensook, Rangsun;Gatphayak, Kesinee;Brenig, Bertram;Knorr, Christoph
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1491-1500
    • /
    • 2019
  • Objective: European pigs have been imported to improve the economically important traits of Thai pigs by crossbreeding and was finally completely replaced. Currently Thai indigenous pigs are particularly kept in a small population. Therefore, indigenous pigs risk losing their genetic diversity and identity. Thus, this study was conducted to perform large-scale genetic diversity and phylogenetic analyses on the many pig breeds available in Thailand. Methods: Genetic diversity and phylogenetics analyses of 222 pigs belonging to Thai native pigs (TNP), Thai wild boars (TWB), European commercial pigs, commercial crossbred pigs, and Chinese indigenous pigs were investigated by genotyping using 26 microsatellite markers. Results: The results showed that Thai pig populations had a high genetic diversity with mean total and effective ($N_e$) number of alleles of 14.59 and 3.71, respectively, and expected heterozygosity ($H_e$) across loci (0.710). The polymorphic information content per locus ranged between 0.651 and 0.914 leading to an average value above all loci of 0.789, and private alleles were found in six populations. The higher $H_e$ compared to observed heterozygosity ($H_o$) in TNP, TWB, and the commercial pigs indicated some inbreeding within a population. The Nei's genetic distance, mean $F_{ST}$ estimates, neighbour-joining tree of populations and individual, as well as multidimensional analysis indicated close genetic relationship between Thai indigenous pigs and some Chinese pigs, and they are distinctly different from European pigs. Conclusion: Our study reveals a close genetic relationship between TNP and Chinese pigs. The genetic introgression from European breeds is found in some TNP populations, and signs of genetic erosion are shown. Private alleles found in this study should be taken into consideration for the breeding program. The genetic information from this study will be a benefit for both conservation and utilization of Thai pig genetic resources.

Genome Mapping Technology And Its Application In Plant Breeding (작물 육종에서 분자유전자 지도의 이용)

  • 은무영
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1995.07a
    • /
    • pp.57-86
    • /
    • 1995
  • Molecular mapping of plant genomes has progressed rapidly since Bostein et al.(1980) introduced the idea of constructing linkage maps of human genome based on restriction fragment length polymorphism (RFLP) markers. In recent years, the development of protein and DNA markers has stimulated interest for the new approaches to plant improvement. While classical maps based on morphological mutant markers have provided important insights into the plant genetics and cytology, the molecular maps based on molecular markers have a number of inherent advatages over classical genetic maps for the applications in genetic studies and/or breeding schemes. Isozymes and DNA markers are numerous, discrete, non-deleterious, codominant, and almost entirely free of environmental and epistatic interactions. For these reasons, they are widely used in constructing detailed linkage maps in a number of plant species. Plant breeders improve crops by selecting plants with desirable phenotypes. However a plant's phenotyes is often under genetic control, positioning at different "quantitative trait loci" (QTLs) together with environmental effects. Molecular maps provide a possible way to determine the effect of the individual gene that combines to produce a quantitative trait because the segregation of a large number of markers can be followed in a single genetic cross. Using market-assisted selection, plants that contain several favorable genes for the trait and do not contain unfavourable segments can be obtained during early breeding processes. Providing molecular maps are available, valuable data relevant to the taxonomic relationships and chromosome evolution can be accumulated by comparative mapping and also the structural relationships between linkage map and physical map can be identified by cDNA sequencing. After constructing high density maps, it will be possible to clone genes, whose products are unknown, such as semidwarf and disease resistance genes. However, much attention has to be paid to level-up the basic knowledge of genetics, physiology, biochemistry, plant pathology, entomology, microbiology, and so on. It must also be kept in mind that scientists in various fields will have to make another take off by intensive cooperation together for early integration and utilization of these newly emerging high-techs in practical breeding. breeding.

  • PDF